
PHYSICAL REVIEW E 102, 022404 (2020)
Editors’ Suggestion

First-principles prediction of the information processing capacity of a simple genetic circuit
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Given the stochastic nature of gene expression, genetically identical cells exposed to the same environmental
inputs will produce different outputs. This heterogeneity has been hypothesized to have consequences for how
cells are able to survive in changing environments. Recent work has explored the use of information theory as
a framework to understand the accuracy with which cells can ascertain the state of their surroundings. Yet the
predictive power of these approaches is limited and has not been rigorously tested using precision measurements.
To that end, we generate a minimal model for a simple genetic circuit in which all parameter values for the model
come from independently published data sets. We then predict the information processing capacity of the genetic
circuit for a suite of biophysical parameters such as protein copy number and protein-DNA affinity. We compare
these parameter-free predictions with an experimental determination of protein expression distributions and the
resulting information processing capacity of E. coli cells. We find that our minimal model captures the scaling
of the cell-to-cell variability in the data and the inferred information processing capacity of our simple genetic
circuit up to a systematic deviation.
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As living organisms thrive in a given environment, they
are faced with constant changes in their surroundings. From
abiotic conditions such as temperature fluctuations or changes
in osmotic pressure, to biological interactions such as cell-
to-cell communication in a tissue or in a bacterial biofilm,
living organisms of all types sense and respond to external
signals. Figure 1(a) shows a schematic of this process for
a bacterial cell sensing a concentration of an extracellular
chemical. At the molecular level where signal transduction
unfolds mechanistically, there are physical constraints on the
accuracy and precision of these responses given by intrinsic
stochastic fluctuations [1]. This means that two genetically
identical cells exposed to the same stimulus will not have
identical responses [2].

One implication of this noise in biological systems is that
cells do not have an infinite resolution to distinguish sig-
nals, and, as a consequence, there is a one-to-many mapping
between inputs and outputs. Furthermore, given the limited
number of possible outputs, there are overlapping responses
between different inputs. This scenario can be mapped to
a Bayesian inference problem where cells try to infer the
state of the environment from their phenotypic response, as
schematized in Fig. 1(b). The question then becomes this: how
can one analyze this probabilistic, rather than deterministic,
relationship between inputs and outputs? The abstract answer
to this question was worked out in 1948 by Claude Shannon,
who, in his seminal work, founded the field of information
theory [3]. Shannon developed a general framework for how
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to analyze information transmission through noisy commu-
nication channels. In his work, Shannon showed that the
only quantity that satisfies three reasonable axioms for a
measure of uncertainty was of the same functional form as the
thermodynamic entropy—thereby christening his metric the
information entropy [4]. He also gave a definition, based on
this information entropy, for the relationship between inputs
and outputs known as the mutual information. The mutual
information I between input c and output p, given by

I =
∑

c

P(c)
∑

p

P(p | c)log2
P(p | c)

P(p)
, (1)

quantifies how much we learn about the state of the input c
given that we get to observe the output p. In other words,
the mutual information can be thought of as a generalized
correlation coefficient that quantifies the degree to which
the uncertainty about a random event decreases given the
knowledge of the average outcome of another random event
[5].

It is natural to conceive of scenarios in which living organ-
isms that can better resolve signals might have an evolutionary
benefit, making it more likely that their offspring will have a
fitness advantage [6]. In recent years there has been a growing
interest in understanding the theoretical limits on cellular
information processing [7,8], and in quantifying how close
evolution has pushed cellular signaling pathways to these
theoretical limits [9–11]. While these studies have treated the
signaling pathway as a “black box,” explicitly ignoring all
the molecular interactions taking place in them, other studies
have explored the role that molecular players and regula-
tory architectures have on these information processing tasks
[12–18]. Despite the great advances in our understanding
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FIG. 1. Cellular signaling systems sense the environment with different degrees of precision. (a) Schematic representation of a cell as
a noisy communication channel. From an environmental input (inducer molecule concentration) to a phenotypic output (protein expression
level), cellular signaling systems can be modeled as noisy communication channels. (b) We treat cellular response to an external stimulus as a
Bayesian inference of the state of the environment. As the phenotype (protein level) serves as the internal representation of the environmental
state (inducer concentration), the probability of a cell being in a specific environment given this internal representation P(c | p) is a function
of the probability of the response given that environmental state P(p | c). (c) The precision of the inference of the environmental state depends
on how well cells can resolve different inputs. For three different levels of input (left panel) the green strain responds more precisely than the
purple strain since the output distributions overlap less (middle panel). This allows the green strain to make a more precise inference of the
environmental state given a phenotypic response (right panel).

of the information processing capabilities of molecular mech-
anisms, the field still lacks a rigorous experimental test of
these detailed models with precision measurements on a sim-
ple system in which physical parameters can be perturbed. In
this work, we approach this task with a system that is both
theoretically and experimentally tractable in which molecular
parameters can be varied in a controlled manner.

Over the past decade, the dialogue between theory and
experiments in gene regulation has led to predictive power
of models not only over the mean level of gene expression,
but the noise as a function of relevant parameters such as
regulatory protein copy numbers, affinity of these proteins to
the DNA promoter, as well as the extracellular concentrations
of inducer molecules [19–22]. These models based on equi-
librium and nonequilibrium statistical physics have reached
a predictive accuracy level such that, for simple cases, it is
now possible to design input-output functions [23,24]. This
provides the opportunity to exploit these predictive models to
tackle the question of how much information genetic circuits
can process. This question lies at the heart of understanding

the precision of the cellular response to environmental signals.
Figure 1(c) schematizes a scenario in which two bacterial
strains respond with different levels of precision to three pos-
sible environmental states, i.e., inducer concentrations. The
overlap between the three different responses is what precisely
determines the resolution with which cells can distinguish
different inputs. This is analogous to how the point spread
function limits the ability to resolve two light-emitting point
sources.

In this work, we follow the same philosophy of theory-
experiment dialogue used to determine model parameters to
predict from first principles the effect that biophysical param-
eters such as transcription factor copy number and protein-
DNA affinity have on the information processing capacity of
a simple genetic circuit. Specifically, to predict the mutual
information between an extracellular chemical signal (input
c, isopropyl β-D-1-thiogalactopyranoside, or IPTG in our
experimental system) and the corresponding cellular response
in the form of protein expression (output p), we must compute
the input-output function P(p | c). To do so, we use a master-
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equation-based model to construct the protein copy number
distribution as a function of an extracellular inducer con-
centration for different combinations of transcription factor
copy numbers and binding sites. Having these input-output
distributions allows us to compute the mutual information I
between inputs and outputs for any arbitrary input distribu-
tion P(c). We opt to compute the channel capacity, i.e., the
maximum information that can be processed by this gene
regulatory architecture, defined as Eq. (1) maximized over all
possible input distributions P(c). By doing so, we examine the
physical limits of what cells can do in terms of information
processing by harboring these genetic circuits. Nevertheless,
given the generality of the input-output function P(p | c) that
we derive, the model presented here can be used to compute
the mutual information for any arbitrary input distribution
P(c). All parameters used for our model were inferred from
a series of studies that span several experimental techniques
[20,25–27], allowing us to make parameter-free predictions
of this information processing capacity [28].

These predictions are then contrasted with experimental
data, where the channel capacity is inferred from single-cell
fluorescence distributions taken at different concentrations of
inducer for cells with previously characterized biophysical pa-
rameters [20,27]. We find that our parameter-free predictions
quantitatively track the experimental data up to a systematic
deviation. The lack of numerical agreement between our
model and the experimental data poses new challenges toward
having a foundational, first-principles understanding of the
physics of cellular decision-making.

The remainder of the paper is organized as follows. In
Sec. I A we define the minimal theoretical model and param-
eter inference for a simple repression genetic circuit. Sec-
tion I B discusses how all parameters for the minimal model
are determined from published datasets that explore different
aspects of the simple repression motif. Section I C computes
the moments of the mRNA and protein distributions from
this minimal model. In Sec. I D we explore the consequences
of variability in gene copy number during the cell cycle. In
addition, we compare experimental and theoretical quantities
related to the moments of the distribution, specifically the
predictions for the fold-change in gene expression (mean
expression relative to an unregulated promoter) and the gene
expression noise (standard deviation over mean). Section I E
follows with reconstruction of the full mRNA and protein
distribution from the moments using the maximum entropy
principle. Finally, Sec. I F uses the distributions from Sec. I E
to compute the maximum amount of information that the
genetic circuit can process. Here again we contrast our zero-
parameter fit predictions with experimental inferences of the
channel capacity.

I. RESULTS

A. Minimal model of transcriptional regulation

As a tractable circuit for which we have control over the
parameters both theoretically and experimentally, we chose
the so-called simple repression motif, a common regulatory
scheme among prokaryotes [29]. This circuit consists of a
single promoter with an RNA-polymerase (RNAP) binding
site and a single binding site for a transcriptional repressor
[20]. The regulation due to the repressor occurs via exclusion
of the RNAP from its binding site when the repressor is
bound, decreasing the likelihood of having a transcription
event. As with many important macromolecules, we consider
the repressor to be allosteric, meaning that it can exist in
two conformations, one in which the repressor is able to
bind to the specific binding site (active state) and one in
which it cannot bind the specific binding site (inactive state).
The environmental signaling occurs via passive import of
an extracellular inducer that binds the repressor, shifting the
equilibrium between the two conformations of the repressor
[27]. In previous work, we have extensively characterized
the mean response of this circuit under different condi-
tions using equilibrium-based models [28]. Here we build
upon these models to characterize the full distribution of
gene expression with parameters such as the repressor copy
number and its affinity for the DNA being systematically
varied.

As the copy number of molecular species is a discrete
quantity, chemical master equations have emerged as a useful
tool to model their inherent probability distribution [30]. In
Fig. 2(a) we show the minimal model and the necessary
set of parameters needed to compute the full distribution of
mRNA and its protein gene product. Specifically, we assume
a three-state model where the promoter can be found in (i) a
transcriptionally active state (A state), (ii) a transcriptionally
inactive state without the repressor bound (I state), and (iii)
a transcriptionally inactive state with the repressor bound (R
state). We do not assume that the transition between the active
state A and the inactive state I occurs due to RNAP binding
to the promoter as the transcription initiation kinetics involve
several more steps than simple binding [31]. We coarse-grain
all these steps into effective “on” and “off” states for the pro-
moter, consistent with experiments demonstrating the bursty
nature of gene expression in E. coli [19]. These three states
generate a system of coupled differential equations for each
of the three state distributions PA(m, p; t ), PI (m, p; t ), and
PR(m, p; t ), where m and p are the mRNA and protein count
per cell, respectively, and t is time. Given the rates depicted in
Fig. 2(a) we define the system of ODEs for a specific m and
p. For the transcriptionally active state, we have

dPA(m, p)

dt
= −

A→I︷ ︸︸ ︷
k(p)

off PA(m, p) +
I→A︷ ︸︸ ︷

k(p)
on PI (m, p) +

m−1→m︷ ︸︸ ︷
rmPA(m − 1, p) −

m→m+1︷ ︸︸ ︷
rmPA(m, p) +

m+1→m︷ ︸︸ ︷
γm(m + 1)PA(m + 1, p) −

m→m−1︷ ︸︸ ︷
γmmPA(m, p)

+
p−1→p︷ ︸︸ ︷

rpmPA(m, p − 1) −
p→p+1︷ ︸︸ ︷

rpmPA(m, p) +
p+1→p︷ ︸︸ ︷

γp(p + 1)PA(m, p + 1) −
p→p−1︷ ︸︸ ︷

γp pPA(m, p), (2)
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FIG. 2. Minimal kinetic model of transcriptional regulation for a simple repression architecture. (a) Three-state promoter stochastic model
of transcriptional regulation by a repressor. The regulation by the repressor occurs via exclusion of the transcription initiation machinery, not
allowing the promoter to transition to the transcriptionally active state. All parameters highlighted with colored boxes were determined from
published datasets based on the same genetic circuit. Parameters in dashed boxes were taken directly from values reported in the literature or
adjusted to satisfy known biological restrictions. (b) Datasets used to infer the parameter values. From left to right, Garcia and Phillips [20] is
used to determine k(r)

off and k(r)
on ; Brewster et al. [26] is used to determine �εAI and k(r)

on ; Razo-Mejia et al. [27] is used to determine KA, KI , and
k(r)

on ; and Jones et al. [25] is used to determine rm, k(p)
on , and k(p)

off .

where the state transitions for each term are labeled by overbraces. For the transcriptionally inactive state I , we have

dPI (m, p)

dt
=

A→I︷ ︸︸ ︷
k(p)

off PA(m, p) −
I→A︷ ︸︸ ︷

k(p)
on PI (m, p) +

R→I︷ ︸︸ ︷
k(r)

off PR(m, p) −
I→R︷ ︸︸ ︷

k(r)
on PI (m, p) +

m+1→m︷ ︸︸ ︷
γm(m + 1)PI (m + 1, p) −

m→m−1︷ ︸︸ ︷
γmmPI (m, p)

+
p−1→p︷ ︸︸ ︷

rpmPI (m, p − 1) −
p→p+1︷ ︸︸ ︷

rpmPI (m, p) +
p+1→p︷ ︸︸ ︷

γp(p + 1)PI (m, p + 1) −
p→p−1︷ ︸︸ ︷

γp pPI (m, p) . (3)

And finally, for the repressor bound state R,

dPR(m, p)

dt
= −

R→I︷ ︸︸ ︷
k(r)

off PR(m, p) +
I→R︷ ︸︸ ︷

k(r)
on PI (m, p) +

m+1→m︷ ︸︸ ︷
γm(m + 1)PR(m + 1, p) −

m→m−1︷ ︸︸ ︷
γmmPR(m, p)

+
p−1→p︷ ︸︸ ︷

rpmPR(m, p − 1) −
p→p+1︷ ︸︸ ︷

rpmPR(m, p) +
p+1→p︷ ︸︸ ︷

γp(p + 1)PR(m, p + 1) −
p→p−1︷ ︸︸ ︷

γp pPR(m, p) . (4)
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As we will discuss later in Sec. I D, the protein degradation
term γp is set to zero since active protein degradation is slow
compared to the cell cycle of exponentially growing bacteria,
but rather we explicitly implement binomial partitioning of
the proteins into daughter cells upon division [32].

It is convenient to rewrite these equations in a compact
matrix notation [30]. For this, we define the vector P(m, p) as

P(m, p) = (PA(m, p), PI (m, p), PR(m, p))T , (5)

where a superscript T is the transpose. By defining the
matrices K to contain the promoter state transitions, Rm and
�m to contain the mRNA production and degradation terms,
respectively, and Rp and �p to contain the protein production
and degradation terms, respectively, the system of ODEs can
then be written as (see [33], Sec. S1, for a full definition of
these matrices)

dP(m, p)

dt
= (K − Rm − m�m − mRp − p�p)

+ RmP(m − 1, p) + (m + 1)�mP(m + 1, p)

+ mRpP(m, p − 1) + (p + 1)�pP(m, p + 1).
(6)

Having defined the gene expression dynamics, we now
proceed to determine all rate parameters in Eq. (6).

B. Inferring parameters from published datasets

A decade of research in our group has characterized the
simple repression motif with an ever expanding array of
predictions and corresponding experiments to uncover the
physics of this genetic circuit [28]. In doing so, we have come
to understand the mean response of a single promoter in the
presence of varying levels of repressor copy numbers and
repressor-DNA affinities [20], due to the effect that competing
binding sites and multiple promoter copies impose [26], and
in recent work, assisted by the Monod-Wyman-Changeux
(MWC) model, we expanded the scope to the allosteric nature
of the repressor [27]. All of these studies have exploited the
simplicity and predictive power of equilibrium approxima-
tions to these nonequilibrium systems [34]. We have also
used a similar kinetic model to that depicted in Fig. 2(a) to
study the noise in mRNA copy number [25]. Although these
studies focus on the same experimental system described
by different theoretical frameworks, in earlier work in our
laboratory an attempt to unite parametric knowledge across
studies based on equilibrium and nonequilibrium models has
not been performed previously. As a test case of the depth
of our theoretical understanding of this simple transcriptional
regulation system, we combine all of the studies mentioned
above to inform the parameter values of the model presented
in Fig. 2(a). Figure 2(b) schematizes the datasets and exper-
imental techniques used to measure gene expression along
with the parameters that can be inferred from them.

Section S2 in [33] expands on the details of how the
inference was performed for each of the parameters. Briefly,
the promoter activation and inactivation rates k(p)

on and k(p)
off , as

well as the transcription rate rm, were obtained in units of the
mRNA degradation rate γm by fitting a two-state promoter
model [no state R from Fig. 2(a)] [35] to mRNA FISH data
of an unregulated promoter (no repressor present in the cell)
[25]. The repressor on rate is assumed to be of the form

k(r)
on = ko[R], where ko is diffusion-limited on rate and [R] is

the concentration of active repressor in the cell [25]. This con-
centration of active repressor is at the same time determined
by the repressor copy number in the cell, and the fraction of
these repressors that are in the active state, i.e., able to bind
DNA. Existing estimates of the transition rates between con-
formations of allosteric molecules set them at the microsecond
scale [36]. By considering this to be representative for our
repressor of interest, the separation of timescales between the
rapid conformational changes of the repressor and the slower
downstream processes such as the open-complex formation
processes allow us to model the probability of the repressor
being in the active state as an equilibrium MWC process.
The parameters of the MWC model KA, KI , and �εAI were
previously characterized from video-microscopy and flow-
cytometry data [27]. For the repressor off rate, k(r)

off , we take
advantage of the fact that the mean mRNA copy number as
derived from the model in Fig. 2(a) cast in the language of
rates is of the same functional form as the equilibrium model
cast in the language of binding energies [37]. Therefore, the
value of the repressor-DNA binding energy �εr constrains
the value of the repressor off rate k(r)

off . These constraints on
the rates allow us to make self-consistent predictions under
both the equilibrium and the kinetic framework. Having all
parameters in hand, we can now proceed to solve the gene
expression dynamics.

C. Computing the moments of the mRNA and protein
distributions

Finding analytical solutions to chemical master equations
is often fraught with difficulty. An alternative approach is to
to approximate the distribution. One such scheme of approxi-
mation, the maximum entropy principle, makes use of the mo-
ments of the distribution to approximate the full distribution.
In this section, we will demonstrate an iterative algorithm to
compute the mRNA and protein distribution moments.

The kinetic model for the simple repression motif depicted
in Fig. 2(a) consists of an infinite system of ODEs for each
possible pair of mRNA and protein copy number, (m, p). To
compute any moment of the distribution, we define a vector

〈mxpy〉 ≡ (〈mx py〉A, 〈mx py〉I , 〈mx py〉R)T , (7)

where 〈mx py〉S is the expected value of mx py in state S ∈
{A, I, R} for x, y ∈ N. In other words, just as we defined the
vector P(m, p), here we define a vector to collect the expected
value of each of the promoter states. By definition, any of
these moments 〈mx py〉S can be computed as

〈mx py〉S ≡
∞∑

m=0

∞∑
p=0

mx pyPS (m, p). (8)

Summing over all possible values for m and p in Eq. (6) results
in an ODE for any moment of the distribution of the form (see
[33] Sec. S3 for a full derivation)

d〈mxpy〉
dt

= K〈mxpy〉 + Rm〈py[(m + 1)x − mx]〉
+�m〈mpy[(m − 1)x − mx]〉
+ Rp〈m(x+1)[(p + 1)y − py]〉
+�p〈mxp[(p − 1)y − py]〉. (9)
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Given that all transitions in our stochastic model are first-
order reactions, Eq. (9) has no moment-closure problem [14].
This means that the dynamical equation for a given moment
only depends on lower moments (see [33], Sec. S3 for full
proof). This feature of our model implies, for example, that the
second moment of the protein distribution 〈p2〉 depends only
on the first two moments of the mRNA distribution 〈m〉 and
〈m2〉, the first protein moment 〈p〉, and the cross-correlation
term 〈mp〉. We can therefore define μ(x,y) to be a vector
containing all moments up to 〈mxpy〉 for all promoter states,

μ(x,y) = [〈m0p0〉, 〈m1p0〉, . . . , 〈mxpy〉]T . (10)

Explicitly for the three-state promoter model depicted in
Fig. 2(a), this vector takes the form

μ(x,y) = [〈m0 p0〉A, 〈m0 p0〉I , 〈m0 p0〉R, . . . ,

〈mx py〉A, 〈mx py〉I , 〈mx py〉R]T . (11)

Given this definition, we can compute the general moment
dynamics as

dμ(x,y)

dt
= Aμ(x,y), (12)

where A is a square matrix that contains all the numerical
coefficients that relate each of the moments. We can then use
Eq. (9) to build matrix A by iteratively substituting values
for the exponents x and y up to a specified value. In the
next section, we will use Eq. (12) to numerically integrate
the dynamical equations for our moments of interest as cells
progress through the cell cycle. We will then use the value
of the moments of the distribution to approximate the full
gene expression distribution. This method is computationally
more efficient than trying to numerically integrate the infinite
set of equations describing the full probability distribution
P(m, p), or using a stochastic algorithm to sample from the
distribution.

D. Accounting for cell-cycle-dependent variability
in gene dosage

As cells progress through the cell cycle, the genome has
to be replicated to guarantee that each daughter cell receives
a copy of the genetic material. As replication of the genome
can take longer than the total cell cycle, this implies that cells
spend part of the cell cycle with multiple copies of each gene
depending on the cellular growth rate and the relative position
of the gene with respect to the replication origin [38]. Genes
closer to the replication origin spend a larger fraction of the
cell cycle with multiple copies compared to genes closer to
the replication termination site [38]. Figure 3(a) depicts a
schematic of this process where the replication origin (oriC)
and the relevant locus for our experimental measurements
(galK) are highlighted.

Since this change in gene copy number has been shown
to have an effect on cell-to-cell variability in gene expression
[25,39], we now extend our minimal model to account for
these changes in gene copy number during the cell cycle.
We reason that the only difference between the single-copy
state and the two-copy state of the promoter is a doubling
of the mRNA production rate rm. In particular, the promoter

activation and inactivation rates k(p)
on and k(p)

off and the mRNA
production rate rm inferred in Sec. I A assume that cells spend
a fraction f of the cell cycle with one copy of the promoter
(mRNA production rate rm) and a fraction (1 − f ) of the cell
cycle with two copies of the promoter (mRNA production rate
2rm). This inference was performed considering that at each
cell state the mRNA level immediately reaches the steady-
state value for the corresponding mRNA production rate. This
assumption is justified since the timescale to reach this steady
state depends only on the degradation rate γm, which for
the mRNA is much shorter (≈ 3 min) than the length of the
cell cycle (≈ 60 min for our experimental conditions) [40].
Section S2 in [33] shows that a model accounting for this
gene copy number variability is able to capture data from
single-molecule mRNA counts of an unregulated (constitu-
tively expressed) promoter.

Given that the protein degradation rate γp in our model
is set by the cell division time, we do not expect that the
protein count will reach the corresponding steady-state value
for each stage in the cell cycle. In other words, cells do not
spend long enough with two copies of the promoter for the
protein level to reach the steady-state value corresponding to
a transcription rate of 2rm. We therefore use the dynamical
equations developed in Sec. I C to numerically integrate the
time trajectory of the moments of the distribution with the
corresponding parameters for each phase of the cell cycle.
Figure 3(b) shows an example corresponding to the mean
mRNA level (upper panel) and the mean protein level (lower
panel) for the case of the unregulated promoter. Given that
we inferred the promoter rate parameters considering that
mRNA reaches steady state in each stage, we see that the
numerical integration of the equations is consistent with the
assumption of having the mRNA reach a stable value in each
stage [see Fig. 3(b) upper panel]. On the other hand, the
mean protein level does not reach a steady state at either
of the cellular stages. Nevertheless, it is notable that after
several cell cycles, the trajectory from cycle to cycle follows
a repetitive pattern [see Fig. 3(b) lower panel]. Previously
we have experimentally observed this repetitive pattern by
tracking the expression level over time with video microscopy
as observed in Fig. 18 of [28].

To test the effects of including this gene copy number
variability in our model, we now compare the predictions of
the model with experimental data. As detailed in Sec. III,
we obtained single-cell fluorescence values of different E.
coli strains carrying a YFP gene under the control of the
LacI repressor. Each strain was exposed to 12 different input
inducer (IPTG) concentrations for ≈ 8 generations for cells to
adapt to the media. The strains imaged spanned three orders
of magnitude in repressor copy number and three distinct
repressor-DNA affinities. Since growth was asynchronous,
we reason that cells were randomly sampled at all stages
of the cell cycle. Therefore, when computing statistics from
the data such as the mean fluorescence value, in reality we
are averaging over the cell cycle. In other words, as de-
picted in Fig. 3(b), quantities such as the mean protein copy
number change over time, i.e., 〈p〉 ≡ 〈p(t )〉. This means that
computing the mean of a population of unsynchronized cells
is equivalent to averaging this time-dependent mean protein
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FIG. 3. Accounting for gene copy number variability during the cell cycle. (a) Schematic of a replicating bacterial genome. As cells
progress through the cell cycle the genome is replicated, duplicating gene copies for a fraction of the cell cycle before the cell divides. oriC
indicates the replication origin, and galK indicates the locus at which the YFP reporter construct was integrated. (b) mean (solid line) ±
standard deviation (shaded region) for the mRNA (upper panel) and protein (lower panel) dynamics. Cells spend a fraction of the cell cycle
with a single copy of the promoter (light brown) and the rest of the cell cycle with two copies (light yellow). Black arrows indicate time of cell
division. (c) Zero-parameter-fit predictions (lines) and experimental data (circles) of the gene expression fold-change (upper row) and noise
(lower row) for repressor binding sites with different affinities (different columns) and different repressor copy numbers per cell (different
lines on each panel). Error bars in data represent the 95% confidence interval on the quantities as computed from 10 000 bootstrap estimates
generated from >500 single-cell fluorescence measurements. In the theory curves, dotted lines indicate the plot in linear scale to include zero,
while solid lines indicate logarithmic scale. For visual clarity, data points in the noise panel with exceptionally large values coming from highly
repressed strains are plotted in a separate panel.

copy number over the span of the cell cycle. Mathematically,
this is expressed as

〈p〉c =
∫ td

to

〈p(t )〉P(t )dt, (13)

where 〈p(t )〉 represents the first moment of the protein distri-
bution as computed from Eq. (9), 〈p〉c represents the average
protein copy number over a cell cycle, to represents the start

of the cell cycle, td represents the time of cell division, and
P(t ) represents the probability of any cell being at time t ∈
[to, td ] of their cell cycle. We do not consider cells uniformly
distributed along the cell cycle since it is known that cell
age is exponentially distributed, having more younger than
older cells at any point in time [41] (see [33], Sec. S9 for
further details). All computations hereafter are therefore done
by applying an average like that in Eq. (13) for the span of
a cell cycle. We remind the reader that these time averages
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are done under a fixed environmental state. It is the trajectory
of cells over cell cycles under a constant environment that
we need to account for. It is through this averaging over the
span of a cell cycle that we turn a periodic process such as the
one shown in Fig. 3(b) into a stationary process that we can
compare with experimental data and, as we will see later, use
to reconstruct the steady-state gene expression distribution.

Figure 3(c) compares zero-parameter fit predictions (lines)
with experimentally determined quantities (points). The upper
row shows the nondimensional quantity known as the fold-
change in gene expression [20]. This fold-change is defined
as the relative mean gene expression level with respect to an
unregulated promoter. For protein this is

fold-change = 〈p(R > 0)〉c

〈p(R = 0)〉c
, (14)

where 〈p(R > 0)〉c represents the mean protein count for cells
with nonzero repressor copy number count R over the entire
cell cycle, and 〈p(R = 0)〉c represents the equivalent for a
strain with no repressors present. The experimental points
were determined from the YFP fluorescent intensities of cells
with varying repressor copy number and a �lacI strain with
no repressor gene present (see Sec. III for further details).
The fold-change in gene expression has previously served
as a metric to test the validity of equilibrium-based models
[37]. We note that the curves shown in the upper panel of
Fig. 3(c) are consistent with the predictions from equilib-
rium models [27] despite being generated from a clearly
nonequilibrium process as shown in Fig. 3(b). The kinetic
model from Fig. 2(a) goes beyond the equilibrium picture
to generate predictions for moments of the distribution other
than the mean mRNA or mean protein count. To test this
extended predictive power, the lower row of Fig. 3(c) shows
the noise in gene expression defined as the standard deviation
over the mean protein count, accounting for the changes in
gene dosage during the cell cycle. Although our model sys-
tematically underestimates the noise in gene expression, the
zero-parameter fits capture the scaling of this noise. Possible
origins of this systematic discrepancy could be the intrinsic
cell-to-cell variability of rate parameters given the variability
in the molecular components of the central dogma machinery
[25], or noise generated by irreversible nonequilibrium reac-
tions not explicitly taken into account in our minimal model
[42]. The large errors for the highly repressed strains [lower
left panel in Fig. 3(c)] are a result of having a small number in
the denominator—mean fluorescence level—when computing
the noise. Although the model is still highly informative about
the physical nature of how cells regulate their gene expression,
the lack of exact numerical agreement between theory and
data provides an opportunity to gain new insights into the
biophysical origin of cell-to-cell variability. In [33], Sec. S8,
we explore empirical ways to account for this systematic devi-
ation. We direct the reader to [33], Sec. S4, where equivalent
predictions are done ignoring the changes in gene dosage due
to the replication of the genome.

E. Maximum entropy approximation

Having numerically computed the moments of the mRNA
and protein distributions as cells progress through the cell

cycle, we now proceed to make an approximate reconstruc-
tion of the full distributions given this limited information.
As hinted in Sec. I C, the maximum entropy principle, first
proposed by Jaynes [43], approximates the entire distribution
by maximizing the Shannon entropy subject to constraints
given by the values of the moments of the distribution [43].
This procedure leads to a probability distribution of the form
(see [33], Sec. S5 for a full derivation)

P(m, p) = 1

Z exp

⎛
⎝−

∑
(x,y)

λ(x,y)m
x py

⎞
⎠, (15)

where λ(x,y) is the Lagrange multiplier associated with the
constraint set by the moment 〈mx py〉, and Z is a normalization
constant. The more moments 〈mx py〉 included as constraints,
the more accurate the approximation resulting from Eq. (15)
becomes.

The computational challenge then becomes an optimiza-
tion routine in which the values for the Lagrange multipliers
λ(x,y) that are consistent with the constraints set by the moment
values 〈mx py〉 need to be found. This is computationally more
efficient than sampling directly out of the master equation
with a stochastic algorithm (see [33], Sec. S6, for further
comparison between maximum entropy estimates and the
Gillespie algorithm). Section S5 in [33] details our imple-
mentation of a robust algorithm to find the values of the
Lagrange multipliers. Figure 4(a) shows example predicted
protein distributions reconstructed using the first six moments
of the protein distribution for a suite of different biophysi-
cal parameters and environmental inducer concentrations. As
repressor-DNA binding affinity [columns in Fig. 4(a)] and
repressor copy number [rows in Fig. 4(a)] are varied, the
responses to different signals, i.e., inducer concentrations,
overlap to varying degrees. For example, the upper right
corner frame with a weak binding site (�εr = −9.7 kBT )
and a low repressor copy number (22 repressors per cell)
have virtually identical distributions regardless of the input
inducer concentration. This means that cells with this set of
parameters cannot resolve any difference in the concentration
of the signal. As the number of repressors is increased, the
degree of overlap between distributions decreases, allowing
cells to better resolve the value of the signal input. On the
opposite extreme, the lower left panel shows a strong binding
site (�εr = −15.3 kBT ) and a high repressor copy number
(1740 repressors per cell). This parameter combination shows
overlap between distributions since the high degree of re-
pression centers all distributions toward lower copy numbers,
again giving little ability for the cells to resolve the inputs.
In Fig. 4(b) and [33], Sec. S5, we show the comparison of
these predicted cumulative distributions with the experimental
single-cell fluorescence distributions. Given the systematic
deviation of our predictions for the protein copy number noise
highlighted in Fig. 3(c), the theoretical distributions (dashed
lines) underestimate the width of the experimental data. We
again direct the reader to [33], Sec. S8, for an exploration of
empirical changes to the moments that improve the agreement
of the predictions. In the following section, we formalize the
notion of how well cells can resolve different inputs from an
information theoretic perspective via the channel capacity.

022404-8



FIRST-PRINCIPLES PREDICTION OF THE … PHYSICAL REVIEW E 102, 022404 (2020)

(a) (b)

FIG. 4. Maximum entropy protein distributions for varying physical parameters. (a) Predicted protein distributions under different inducer
(IPTG) concentrations for different combinations of repressor-DNA affinities (columns) and repressor copy numbers (rows). The first six
moments of the protein distribution used to constrain the maximum entropy approximation were computed by integrating Eq. (9) as cells
progressed through the cell cycle as described in Sec. I D. (b) Theory-experiment comparison of predicted fold-change empirical cumulative
distribution functions (ECDF). Each panel shows two example concentrations of inducer (colored curves) with their corresponding theoretical
predictions (dashed lines). Distributions were normalized to the mean expression value of the unregulated strain in order to compare theoretical
predictions in discrete protein counts with experimental fluorescent measurements in arbitrary units. In the legend β ≡ (kBT )−1.

F. Theoretical prediction of the channel capacity

We now turn our focus to the channel capacity, which is a
metric by which we can quantify the degree to which cells can
measure the environmental state (in this context, the inducer
concentration). The channel capacity is defined as the mutual
information I between input and output [Eq. (1)], maximized
over all possible input (IPTG) distributions P(c). If used as a
metric of how reliably a signaling system can infer the state
of the external signal, the channel capacity, when measured in
bits, is commonly interpreted as the logarithm of the number
of states that the signaling system can properly resolve. For
example, a signaling system with a channel capacity of C
bits is interpreted as being able to resolve 2C states, though
channel capacities with fractional values are allowed. We
therefore prefer the Bayesian interpretation that the mutual
information quantifies the improvement in the inference of the
input when considering the output compared to just using the
prior distribution of the input by itself for prediction [14,44].
Under this interpretation, a channel capacity of a fractional bit
still quantifies an improvement in the ability of the signaling
system to infer the value of the extracellular signal compared
to having no sensing system at all.

Computing the channel capacity implies optimizing over
an infinite space of possible distributions P(c). For special
cases in which the noise is small compared to the dynamic
range, approximate analytical equations have been derived
[17]. But given the high cell-to-cell variability that our model
predicts, the conditions of the so-called small noise approx-
imation are not satisfied. We therefore appeal to a numer-
ical solution known as the Blahut-Arimoto algorithm [45]
(see [33], Sec. S7, for further details). Figure 5(a) shows
zero-parameter fit predictions of the channel capacity as a
function of the number of repressors for different repressor-
DNA affinities (solid lines). These predictions are contrasted
with experimental determinations of the channel capacity
as inferred from single-cell fluorescence intensity distribu-
tions taken over 12 different concentrations of the inducer.
Briefly, from single-cell fluorescence measurements we can
approximate the input-output distribution P(p | c). Once these
conditional distributions are fixed, the task of finding the input
distribution at channel capacity becomes a computational
optimization routine that can be undertaken using conjugate
gradient or similar algorithms. For the particular case of
the channel capacity on a system with a discrete number

022404-9



MANUEL RAZO-MEJIA et al. PHYSICAL REVIEW E 102, 022404 (2020)

(a) (b)

FIG. 5. Comparison of theoretical and experimental channel capacity. (a) Channel capacity as inferred using the Blahut-Arimoto algorithm
[45] for varying number of repressors and repressor-DNA affinities. All inferences were performed using 12 IPTG concentrations as detailed
in Sec. III. Curves represent zero-parameter fit predictions made with the maximum entropy distributions as shown in Fig. 4. Points represent
inferences made from single cell fluorescence distributions (see [33], Sec. S8, for further details). Theoretical curves were smoothed using
a Gaussian kernel to remove numerical precision errors. (b) Example input-output functions in opposite limits of channel capacity. Lower
panel illustrates that zero channel capacity indicates that all distributions overlap. Upper panel illustrates that as the channel capacity increases,
the separation between distributions increases as well. Arrows point to the corresponding channel capacity computed from the predicted
distributions.

of inputs and outputs, the Blahut-Arimoto algorithm is built
in such a way that it guarantees the convergence toward
the optimal input distribution (see [33], Sec. S7, for further
details). Figure 5(b) shows example input-output functions for
different values of the channel capacity. This illustrates that
having access to no information (zero channel capacity) is
a consequence of having overlapping input-output functions
(lower panel). On the other hand, the more separated the
input-output distributions are (upper panel), the higher the
channel capacity can be.

All theoretical predictions in Fig. 5(a) are systematically
above the experimental data. Although our theoretical predic-
tions in Fig. 5(a) do not numerically match the experimental
inference of the channel capacity, the model does capture
interesting qualitative features of the data that are worth high-
lighting. On one extreme, for cells with no transcription fac-
tors, there is no information processing potential as this simple
genetic circuit would be constitutively expressed regardless
of the environmental state. As cells increase the transcription
factor copy number, the channel capacity increases until it
reaches a maximum before falling back down at high repres-
sor copy number since the promoter would be permanently
repressed. The steepness of the increment in channel capacity
as well as the height of the maximum expression is highly
dependent on the repressor-DNA affinity. For strong binding
sites [blue curve in Fig. 5(a)] there is a rapid increment in the
channel capacity, but the maximum value reached is smaller
compared to a weaker binding site [orange curve in Fig. 5(a)].
In [33], Sec. S8, we show using the small noise approximation
[9,17] that if the systematic deviation of our predictions on
the cell-to-cell variability was explained with a multiplicative
constant, i.e., if all noise predictions can be corrected by
multiplying them by a single constant, we would expect the
channel capacity to be off by a constant additive factor. This

factor of ≈ 0.43 bits can recover the agreement between the
model and the experimental data.

II. DISCUSSION

Building on Shannon’s formulation of information theory,
there have been significant efforts using this theoretical frame-
work to understand the information processing capabilities
of biological systems, and the evolutionary consequences for
organisms harboring signal transduction systems [1,6,9,46–
48]. Recently, with the mechanistic dissection of molecular
signaling pathways, significant progress has been made on
the question of the physical limits of cellular detection and
the role that features such as feedback loops play in this task
[7,14,16,49,50]. But the field still lacks a rigorous experi-
mental test of these ideas with precision measurements on a
system that is tractable both experimentally and theoretically.

In this paper, we take advantage of the recent progress on
the quantitative modeling of input-output functions of genetic
circuits to build a minimal model of the simple repression
motif [28]. By combining a series of studies on this circuit
spanning diverse experimental methods for measuring gene
expression under a myriad of different conditions, we pos-
sess complete a priori parametric knowledge—allowing us
to generate parameter-free predictions for processes related to
information processing. Some of the model parameters for our
kinetic formulation of the input-output function are informed
by inferences made from equilibrium models. We use the fact
that if both kinetic and thermodynamic languages describe
the same system, the predictions must be self-consistent.
In other words, if the equilibrium model can only make
statements about the mean mRNA and mean protein copy
number because of the way these models are constructed,
those predictions must be equivalent to what the kinetic
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model has to say about these same quantities. This condition,
therefore, constrains the values that the kinetic rates in the
model can take. To test whether or not the equilibrium picture
can reproduce the predictions made by the kinetic model,
we compare the experimental and theoretical fold-change in
protein copy number for a suite of biophysical parameters
and environmental conditions [Fig. 3(c), upper row]. The
agreement between theory and experiment demonstrates that
these two frameworks can indeed make consistent predictions.

The kinetic treatment of the system brings with it increas-
ing predictive power compared to the equilibrium picture.
Under the kinetic formulation, the predictions are not limited
only to the mean but to any of the moments of the mRNA
and protein distributions. Furthermore, our formulation in
terms of dynamical equations allows us to account for the
time-varying nature of the moments of the mRNA and protein
copy numbers. Specifically, since the protein mean lifetime is
comparable with the cell cycle length, the protein copy num-
ber does not reach a steady state over the duration of the cell
cycle. Accounting for this effect increases the expected cell-
to-cell variability when measuring nonsynchronized cells. We
first test these predictions by comparing the noise in protein
copy number (standard deviation/mean) with experimental
data. Our minimal model predicts the noise up to a sys-
tematic deviation. The physical or biological origins of this
discrepancy remain an open question. In that way, the work
presented here exposes the status quo of our understanding of
gene regulation in bacteria, posing new questions to be an-
swered with future refinements of the model. We then extend
our analysis to infer entire protein distributions at different
input signal concentrations by using the maximum entropy
principle. What this means is that we compute moments of
the protein distribution, and then use these moments to build
an approximation to the full distribution. These predicted
distributions are then compared with experimental single-cell
distributions as shown in Fig. 4(b) and [33], Sec. S5. Again,
although our minimal model systematically underestimates
the width of the distributions, it informs how changes in
parameters such as protein copy number or protein-DNA
binding affinity will affect the full probabilistic input-output
function of the genetic circuit, up to a multiplicative constant.
We then use our model to predict the information processing
capacity.

By maximizing the mutual information between input sig-
nal concentration and output protein distribution over all pos-
sible input distributions, we predict the channel capacity of the
system over a suite of biophysical parameters such as varying
repressor protein copy number and repressor-DNA binding
affinity. Although there is no reason to assume the simplified
synthetic circuit we used as an experimental model operates
optimally given the distribution of inputs, the relevance of the
channel capacity comes from its interpretation as a metric of
the physical limit of how precise an inference cells can make
about what the state of the environment is. Our model, despite
the systematic deviations, makes nontrivial predictions such
as the existence of an optimal repressor copy number for a
given repressor-DNA binding energy, predicting the channel
capacity up to an additive constant (see Fig. 5). The origin
of this optimal combination of repressor copy number and
binding energy differs from previous publications in which

an extra term associated with the cost of producing protein
was included in the model [16]. This optimal parameter
combination is a direct consequence of the fact that the LacI
repressor cannot be fully deactivated [27]. This implies that
as the number of repressors increases, a significant number of
them are still able to bind to the promoter even at saturating
concentrations of the inducer. This causes all of the input-
output functions to shift toward low expression levels, regard-
less of the inducer concentration, decreasing the amount of
information that the circuit is able to process. Interestingly,
the number of bits predicted and measured in our system is
similar to that of the gap genes in the Drosophila embryo
[10]. Although this is a suggestive numerical correspondence
that sets current experimental data on information processing
capacity of genetic circuits between 1 and 2 bits, more work is
required to fully understand the effect that different regulatory
architectures have on the ability to resolve different signals.

We consider it important to highlight the limitations of
the work presented here. The previously discussed systematic
deviation for the noise and skewness of the predicted distri-
butions (see [33], Sec. S8), and therefore of the predicted
distributions and channel capacity, remains an unresolved
question. Our current best hypothesis for the origin of this
unexplained noise pertains to cell-to-cell variability in the
central dogma machinery. More specifically, our model does
not account for changes in RNAP and sigma factor copy num-
bers, changes in ribosome numbers, and even the variability
in the repressor copy number. This possibility deserves to be
addressed in further iterations of our minimal model. Also, as
first reported in [27], our model fails to capture the steepness
of the fold-change induction curve for the weakest repressor
binding site [see Fig. 3(b)]. Furthermore, the minimal model
in Fig. 2(a), despite being widely used, is an oversimpli-
fication of the physical picture of how the transcriptional
machinery works. The coarse-graining of all the kinetic steps
involved in transcription initiation into two effective promoter
states—active and inactive—ignores potential kinetic regu-
latory mechanisms of intermediate states [51]. Moreover, it
has been argued that despite the fact that the mRNA count
distribution does not follow a Poisson distribution, this effect
could be caused by unknown factors not at the level of
transcriptional regulation [52].

The findings of this work provide the opportunity to ac-
curately test intriguing ideas that connect Shannon’s metric
of how accurately a signaling system can infer the state of the
environment, with Darwinian fitness [6]. Beautiful work along
these lines has been done in the context of the developmental
program of the early Drosophila embryo [9,11]. These studies
demonstrated that the input-output function of the pair-rule
genes works at channel capacity, suggesting that selection has
acted on these signaling pathways, pushing them to operate
at the limit of what the physics of these systems allows. Our
system differs from the early embryo in the sense that we
have a tunable circuit with variable amounts of information
processing capabilities. Furthermore, compared with the fly
embryo in which the organism tunes both the input and output
distributions over evolutionary time, we have experimental
control of the distribution of inputs to which the cells are
exposed. Consequently, this means that instead of seeing the
final result of the evolutionary process, we would be able to
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set different environmental challenges, and track over time the
evolution of the population. These experiments could shed
light on the suggestive hypothesis of information bits as a
trait on which natural selection acts. We see this exciting
direction as part of the overall effort in quantitative biology
of predicting evolution [53].

III. MATERIALS AND METHODS

A. E. coli strains

All strains used in this study were originally made for
Ref. [27]. We chose a subset of three repressor copy numbers
that span two orders of magnitude. We refer the reader to [27]
for details on the construction of these strains. Briefly, the
strains have a construct consisting of the lacUV5 promoter
and one of three possible binding sites for the lac repressor
(O1, O2, and O3) controlling the expression of a YFP reporter
gene. This construct is integrated into the genome at the galK
locus. The number of repressors per cell is varied by changing
the ribosomal binding site controlling the translation of the
lac repressor gene. The repressor constructs were integrated
in the ybcN locus. Finally, all strains used in this work consti-
tutively express an mCherry reporter from a low copy number
plasmid. This serves as a volume marker that facilitates the
segmentation of cells when processing microscopy images.

B. Growth conditions

For all experiments, cultures were initiated from a
50% glycerol frozen stock at −80 ◦C. Three strains—
autofluorescence (auto), �lacI (�), and a strain with a known
binding site and repressor copy number (R)—were inoculated
into individual tubes with 2 mL of Lysogeny Broth (LB Miller
Powder, BD Medical) with 20 μg/mL of chloramphenicol
and 30 μg/mL of kanamycin. These cultures were grown
overnight at 37 ◦C with rapid agitation to reach saturation.
The saturated cultures were diluted 1:1000 into 500 μL of
M9 minimal media (M9 5X Salts, Sigma-Aldrich M6030;
2 mM magnesium sulfate, Mallinckrodt Chemicals 6066-04;
100 mM calcium chloride, Fisher Chemicals C79-500) sup-
plemented with 0.5% (w/v) glucose on a 2 mL 96-deep-well
plate. The R strain was diluted into 12 different wells with
minimal media, each with a different IPTG concentration (0,
0.1, 5, 10, 25, 50, 75, 100, 250, 500, 1000, and 5000 μM)
while the auto and � strains were diluted into two wells
(0 and 5000 μM). Each of the IPTG concentrations came
from a single preparation stock kept in 100-fold concentrated
aliquots. The 96-well plate was then incubated at 37 ◦C with
rapid agitation for 8 h before imaging.

C. Microscopy imaging procedure

The microscopy pipeline used for this work exactly fol-
lowed the steps from [27]. Briefly, 12 2% agarose (Life

Technologies UltraPure Agarose, Cat. No. 16500100) gels
were made out of M9 media (or PBS buffer) with the cor-
responding IPTG concentration (see growth conditions) and
placed between two glass coverslips for them to solidify after
microwaving. After the 8 h incubation in minimal media,
1 μL of a 1:10 dilution of the cultures into fresh media or
PBS buffer was placed into small squares (roughly 10 mm ×
10 mm) of the different agarose gels. A total of 16 agarose
squares—12 concentrations of IPTG for the R strain, 2 con-
centrations for the �, and 2 for the auto strain—were mounted
into a single glass-bottom dish (Ted Pella Wilco Dish, Cat. No.
14027-20) that was sealed with parafilm.

All imaging was done on an inverted fluorescent micro-
scope (Nikon Ti-Eclipse) with a custom-built laser illumi-
nation system. The YFP fluorescence (quantitative reporter)
was imaged with a CrystaLaser 514 nm excitation laser
coupled with a laser-optimized (Semrock Cat. No. LF514-
C-000) emission filter. All strains, including the auto strain,
included a constitutively expressed mCherry protein to aid the
segmentation. Therefore, for each image three channels (YFP,
mCherry, and bright field) were taken, with ≈ 30 different
fields of view, each with ≈ 20 cells. 25 images of a fluorescent
slide and 25 images of the camera background noise were
taken every imaging session in order to flatten the illumina-
tion. The image processing pipeline for this work is exactly
the same as in [27].

D. Data and code availability

All data and custom scripts were collected and stored using
Git version control. Code for raw data processing, theoretical
analysis, and figure generation is available on the GitHub
repository [54]. The code can also be accessed via [55].
Raw microscopy data are stored on the CaltechDATA data
repository and can be accessed via [56]. Bootstrap estimates
of experimental channel capacity are also available on the
CaltechDATA data repository via [57].
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