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1 Strains

All Escherichia coli strains used in this work are described in Table 1. Plasmids with MeshI (GE463) or RelA
(GE462) under inducible control were acquired fromAddgene and transformed into our wildtypeNCM3722
host strain.

Strain Source DescriptionNCM3722 Laboratory of Terence Hwa WTGE463 Plasmid from Addgene, AddGeneID:175594 pMeshIGE462 Plasmid from Addgene, AddGeneID:175595 pRelA
Table 1: Strains used in this study.
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2 Image Processing

In this work, we directly measured cell size parameters from phase-contrast microscopy images at 100X
magnification. We employed an in-house image processing Python pipeline to segment and measure per-
cell parameters. The steps of this segmentation algorithm are outlined in Fig. A1. Briefly, individual cells are
identified in an image through several rounds of filtering and thresholding. Once cell masks are identified,
each is rotated and aligned to a common axis and contours are determined by edge detection, smoothing,
and spline interpolation. With a spline interpolation in place, the curvature k along the contour along an xy
coordinate system at each point is calculated via

k =
x′y′′ − y′x′′

(x′2 + y′2)3/2 (1)
Note that this preserves sign of the curvature. By rotating each cell mask to have the same axis of orienta-
tion, we can ensure that the sign of the curvature is consistent between individual cells and images.

With an estimate of the cell curvature in place at each position along the contour, we apply a threshold
on this value to identify what portions of the contour correspond to the cell sides (k ≈ 0) versus the cell
caps (|k| > 0). We identified the cap regions of the cells as the contour points with radii of curvature greater
than 0.5 µm. To compute the cell length dimension, we took the length to be the maximum y coordinate
difference between contour points of the two caps. For the width, we computed the average minimum
pairwise distance between the two cell side contours. Representative segmented cell peripheries are shown
in Fig. A2 for 100 cells from a single wildtype sample grown in a glucose minimal medium. We found that
our segmentation protocols yielded measurements that were in line with literature cell size measurements
and exhibited the same apparent growth-rate dependence, as shown in Fig. S2(E-H).

3 Bayesian Inference

In this work, we utilize Bayesian statistical methods to systematically propagate all uncertainty from mea-
surements and our model assumptions to generate the final predictions and experimental data presented in
this work. In the subsections that follow, we present detailed descriptions of the various components of the
inference. In all cases, inferences using literature data and inferences using our suite of experimental mea-
surements were performed independently. Further, we note that all inference of model parameters and cal-
culation of estimatedmembrane protein densities were conducted simultaneously, resulting in a rather large
posterior probability distribution that precludes complete enumeration here. However, we invite the reader
to examine the full statistical inference models, which are written using the Stan probabilistic programming
language [1], andwhich are available on the paperGitHub repository (github.com/cremerlab/density_maintenance).
We find that these models, coupled with the inline comments, are easier to parse than a full mathematical
statement.

Speaking generally, we sought to inference the probability of a parameter θ taking on a given value,
conditioned on an experimental measurement y. This quantity, termed the posterior probability distribution
g(θ | y) (hereafter called the posterior) can be computed using Bayes’ rule,
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Figure A1: Segmentation and cell measurement pipeline. Raw phase-contrast images of cells are passed through (A) a black
tophat filter and (B) Otsu thresholding to arrive at emphasized cell boundaries. (C) Laplacian of Gaussian segmentation
is then applied to arrive at rough cell masks. For each cell, the sgementation mas is (D) rotated and aligned and the
periphery is identified using (E) contouring and (F) Savgol filtering. The isolated contours are then smoothed with (G)
spline interpolation. In a clock-wise direction, the (H) curvature of the contour is calculated and used to (I) identify sides
and caps. With morphology assigned, cell dimensions are then (J) measured.
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Figure A2: Example segmentation of E. coli cells grown on a glucose minimal medium to steady-state. Blue and green
regions of the contours correspond to the caps and sides of the cells, respectively.
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g(θ | y) =
f (y | θ)g(θ)

f (y)
(2)

where g and f denote probability density functions over parameters and data, respectively. In comput-
ing the posterior, one must minimally enumerate the likelihood function f (y | θ) and the prior g(θ). The
denominator of Eq. 2 is termed the evidence or the marginalized likelihood and represents the probability
of observing a datum y irrespective of the model. For our purposes, we can treat this as a normalization
constant and neglect it. As such, Eq. 2 becomes

g(θ | y) ∝ f (y | θ)g(θ). (3)
The likelihood function f (y | θ) represents the probability of observing a datum y given a particular value

of the parameter θ. In all cases for this work, we took the likelihood to have the form of a Gaussian distri-
bution parameterized by a mean µ and homoscedastic error σ,

f (y | θ) =
1√

2πσ2
exp

[
− (y − µ)2

2σ2

]
⇒ f (y | θ) ∼ Normal(µ, σ) (4)

where we have introduced a short-hand notation. Asserting a Gaussian likelihood makes an assumption
about how the measurements are distributed about a mean value µ, but not what that mean value is. The
remaining subsections of this Appendix section outline how we determine what the mean value of this
likelihood function is for a variety of components of our models.

Finally, we must also provide a definition of the prior distribution over the parameter g(θ). This distri-
bution encapsulates all knowledge we have of what the true parameter value of θ might be without taking
the observations into account. This is a critically important point and each prior choice represents the as-
sumptions and domain expertise we employ in crafting these models. In the subsections that follow, we
outline the inferential models and provide our prior choices. We used the Probability Distribution Explorer
tool (distribution-explorer.github.io) to interactively identify parameter values that yielded prior dis-
tributions consistent with our domain knowledge.

To compute credible regions of model predictions and fits from the posterior distributions (such as the
uncertainty bands in Fig. 3), we employed Markov Chain Monte Carlo (MCMC) sampling techniques im-
plemented through Stan’s probabilistic programming framework [1]. For a given model with a Gaussian
likelihood as in Eq. 4, we first draw samples of µ and σ from their posterior distributions. Using these
posterior parameter samples, we generate posterior predictive datasets ỹ by drawing from the likelihood
f (ỹ | θ) ∼ Normal(µposterior, σposterior). We construct credible intervals at the 68% and 95% levels, which
approximately correspond to one and two standard deviations in a normal distribution, respectively. This is
achieved by finding the appropriate quantiles of the posterior samples for each parameter of interest. The
process allows us to construct marginal and joint credible intervals, while simultaneously enabling model
validation through posterior predictive checks. By comparing the statistical properties of these simulated
datasets ỹ to our observed data y, we can diagnose potential model misspecifications, assess the model’s
predictive performance, and quantify the uncertainty inherent in our parameter estimates.
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3.1 Inferring the Total Protein and RNAMass per Cell

In this work, we combined independent measurements of the total protein and RNA per cell in wildtype E.
coli with our mass spectrometry measurements to calculate various properties, including the total protein
masses in each cellular compartment and the corresponding densities.

We assumed that the total protein per cell M(tot)
prot scaled exponentially with the steady-state growth rate

λ,
M(tot)

prot (λ) = βprot,0 exp
(

βprot,1λ
)

, (5)
where βprot,0 and βprot,1 are phenomenological coefficients. Setting this equation as the mean of a Normal
likelihood, we inferred the values of these parameters using MCMC setting the following priors:

βprot,0 ∼ Inv.Gamma(α = 13.21, β = 1062) ; βprot,1 ∼ Normal(0, 1), (6)
where Inv.Gamma denotes the Inverse Gamma function. Values for the location and scale parameters of
this distribution (α and β) were chosen such that the upper and lower bounds of the 95th percentile were
50 fg/cell and 150 fg/cell, respectively.

We also assumed that the total RNA per cell M(tot)
RNA scaled exponentially with the steady-state growth

rate λ,
M(tot)

RNA(λ) = βRNA,0 exp (βRNA,1λ) , (7)
where βRNA,0 and βRNA,1 are the phenomenological coefficients we seek to infer. For this inference, we set
the following priors:

βRNA,0 ∼ Inv.Gamma(α = 3.358, β = 77.87) ; βRNA,1 ∼ Normal(0, 1), (8)
where Inv.Gamma denotes the Inverse Gamma function. Values for the location and scale parameters of
this distribution (α and β) were chosen such that the upper and lower bounds of the 95th percentile were
10 fg/cell and 100 fg/cell, respectively.
3.2 Inferring Model Parameters

As derived in the main text, the central prediction of the density maintenance model is that the cellular
surface-to-volume ratio SA/V is related to the cellular composition and proteome partitioning between
compartments via

SA/V =
κψmem

2
[
1 − ψmem − ψperi + βϕrib

] (9)
whereψmem is the proteomepartitioning towards themembrane, ψperi is the partitioning toward the periplasm,
κ is the cytoplasm-membrane density ratio, and ϕrib is the ribosomal proteome allocation, related to the
RNA-to-protein ratio via the proportionality constant β, derived in the next section. To test our model, we
sought to estimate the value of κ that could describe how the SA/V scaled as ϕrib was varied, requiring usto also estimate how ψmem and ψperi depended on ϕrib.There are many different functional forms one could use to describe how the ψ’s depended on ϕrib. We
made the empirical assumption that the membrane proteome partitioning ψmem was linearly dependent on
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ϕrib with the form
ψmem(ϕrib) = β0,ψmem + β1,ψmem ϕrib (10)

where β0,ψmem and β1,ψmem are phenomenological constants we sought to infer. For this inference, we defined
the priors to be

β0,ψmem ∼ Beta(α = 1.262, β = 5.967) ; βψmem ∼ Normal(0, 1), (11)
where Beta denotes the Beta distribution, which is defined on the interval [0, 1]. Values for the location α

and scale β parameters of the Beta distribution were chosen such that the lower and upper bounds of the
95th percentile were 0.01 and 0.5, respectively.

For the periplasmic partitioning, we empirically modeled an exponential dependence on ϕrib, having theform
ψperi(ϕrib) = β0,ψperi exp

(
β1,ψperi ϕrib

)
, (12)

where the priors for the phenomenological constants β0,ψperi and β1,ψperi were similarly defined to be
β0,ψperi ∼ Beta(α = 1.262, β = 5.967) ; β1,ψperi ∼ Normal(0, 10), (13)

where a broader prior on β1,ψperi was defined to permit a stronger dependence on ϕrib. Bounds for α and β in
the Beta distribution were empirically chosen such that the lower and upper bounds of the 95th percentile
were 0.01 and 0.5, respectively

These dependencieswere inferred simultaneouslywith our inference of κ, given our directmeasurement
of SA/V and ϕrib given Eq. 9. For this inference, we assigned a prior distribution over κ to be

κ ∼ Inv.Gamma(α = 2.863, β = 140.1), (14)
where the values for the location α and scale β parameters were chosen such that the lower and upper
bounds of the 95th percentile were 20 µm−1 and 250 µm−1, respectively.

4 Relating Ribosomal Proteome Allocation ϕrib and the RNA-to-Protein Ratio

In the main text, we make the assertion that the ribosomal proteome fraction ϕrib is related to the RNA-to-
protein ratio M(tot)

RNA/M(tot)
prot via the proportionality constant β. This constant can be estimated directly [2,3]

given our knowledge of the RNA and protein content of the ribosome [2,4].
The vast majority of total cellular RNA is ribosomal [2], allowing us to state

M(tot)
rRNA ≈ αM(tot)

RNA, (15)
where M(tot)

rRNA is the total rRNA mass of the cell, M(tot)
RNA is the total RNA mass and α is a fractional quantity

between 0 and 1. We can make the assumption that approximately all rRNA is associated with ribosomal
particles, allowing us to calculate this mass MrRNA as

M(tot)
rRNA = mrRNANrib, (16)
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where mrRNA is the total mass of rRNA associated with a single ribosome and Nrib is the total number of
ribosomes per cell. Assuming that all ribosomal proteins are within assembled ribosomes, the total number
of ribosomes Nrib can be calculated from the ribosomal allocation ϕrib and the total protein mass M(tot)

prot as

Nrib =
ϕrib M(tot)

prot

mrib
, (17)

where mrib is the total proteinaceous mass of a single ribosome.
We can combine Eq. 15 - Eq. 17 and solve for the total RNA-to-protein ratio M(tot)

RNA/M(tot)
prot to yield

M(tot)
RNA

M(tot)
prot

=
mrRNA

αmrib
ϕrib = βϕrib, (18)

where β is the proportionality constant relating ribosomal allocation and the RNA-to-protein ratio. Using
our knowledge of the total length of rRNA (≈ 4500 nt) and total size of ribosomal proteins (≈ 7500 AA [3]),
the precise value of β can be calculated as

β =

mrRNA︷ ︸︸ ︷[
4500RNA nt
ribosome · 340Da

RNA nt
]
·
[ ribosome

7500AA · AA
110Da

]
︸ ︷︷ ︸

mrib

·
[

1
0.85

]
︸ ︷︷ ︸

α

≈ 2.18, (19)

which is in close alignment with other calculations [2,3].
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