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Abstract

Microbes exhibit precise control over their composition and geometry in order to adapt and grow
in diverse environments. However, the mechanisms that orchestrate this simultaneous regulation, and
how they are causally linked, remains poorly understood. In this work, we derive and experimentally
test a biophysical model of cell size regulation in Escherichia coli which relates the cellular surface-to-
volume ratio to the total macromolecular composition and partitioning of the proteome between cellular
compartments. Central to thismodel is the observation that themacromolecular density of the cytoplasm
and the protein density within the cell membranes are maintained at a constant ratio across growth
conditions. Using quantitative mass spectrometry, single-cell microscopy, and biochemical assays, we
show this model quantitatively predicts a non-linear relationship between the surface-to-volume ratio,
proteome localization, and the total ribosome content of the cell. Thismodel holds under perturbations of
intracellular ppGpp concentrations–thereby changing the ribosomal content–demonstrating that cellular
geometry is not strictly determined by the cellular growth rate. These findings provide a biophysical
link between the coregulation of proteome organization and cellular geometry, offering a quantitative
framework for understanding bacterial size regulation across conditions.

1 Introduction

Microbial cells demonstrate remarkable phenotypic plasticity, simultaneously regulating their size as well as
their macromolecular composition in concert with their growth rate across diverse conditions.1 Research
on this plasticity has largely proceeded along separate lines, resulting in a set of phenomenological "growth
laws" that independently describe how composition2–14 and geometry15–26 scale with growth rate. This has
been most prominently studied in the model bacterium Escherichia coliwhere the cellular ribosome content
[Fig. S1(A)] and cell volume [Fig. S1(B)] scale approximately linearly and exponentially with the steady-
state growth rate, respectively. Inspired by these strong phenomenological relations, several studies have
interrogated their plausible interconnection,27–29 yetwe lack a unifyingmechanistic framework that directly
relates compositional and geometric regulation across diverse environments.
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In this work, we integrate a systematic experimental dissection of compositional and geometric regu-
lation in E. coli across growth conditions with biophysically-grounded mathematical modeling to establish
a holistic, quantitatively predictive view of how proteomic composition and partitioning between cellular
compartments jointly influence cellular geometry. Using quantitative mass spectrometry, we reveal a strong
growth-rate dependence in how E. coli partitions its proteome between the cytoplasm, periplasm, and cell
membranes. Specifically, we show that the cytoplasmic and periplasmic proteome partitions are strongly
anti-correlated, suggesting a trade-off in localization between these compartments, while the membrane
fraction of the proteome is constant across growth conditions. Given these relations, we propose that
cell geometry is controlled such that the macromolecular densities within these compartments are tightly
constrained. We present a biophysical model centered on this density-maintenance hypothesis that quan-
titatively describes how the surface-to-volume is directly dependent on the cellular composition, thereby
providing a link between the phenomenological growth laws.

2 Results

2.1 Proteome Partitioning Between Cellular Compartments is Tightly Controlled and Condition
Dependent

Interrogating the relationship between compositional and size regulation demands a self-consistent dataset
where macromolecular composition, proteomic localization, cell geometry, and growth rates are simultane-
ously measured across different environmental conditions. Using the Gram-negative bacterium E. coli as
a model system, we conducted a comprehensive suite of experiments to simultaneously measure these
quantities in steady-state across seven different growth conditions defined by different carbon sources or
mixes of carbon sources (described in Methods), yielding a data set highly-consistent with aggregated data
from the literature [Fig. S2]. Leveraging recent advancements in quantitative mass spectrometry30 and lo-
calization annotation of the E. coli proteome,31 we queried how the E. coli proteome is partitioned between
cellular compartments, namely the cytoplasm, periplasm, and membranes [Fig. 1(A)].

The fraction of the proteome partitioned to each compartment exhibits distinct scaling relationships
with growth rate. The cytoplasmic proteome partition (ψcyto) increases approximately linearly as a function
of the growth rate, ranging from∼ 75% to 85% of the total proteome [Fig. 1(B)]. In contrast, the periplasmic
partition (ψperi) decreases with increasing growth rate, ranging from ∼ 15% to 5% [Fig. 1(C)]. Notably, the
partitioning of membrane-associated proteins (ψmem) remains approximately constant at ∼ 12%, exhibiting
no significant dependence on growth rate [Fig. 1(D)]. This suggests that proteome localization is subject to
global regulation beyond functional constraints. For example, since metabolic proteins–including enzymes
and transporter components–are distributed across all compartments [Fig. S3], their allocation must be
coordinated not just according to function but also spatially within the cell. This implies that localization dy-
namics are an integral part of cellular proteome regulation, rather than a passive consequence of metabolic
demand.

The cytoplasmic and periplasmic partitioning trends are near-perfectly anticorrelated across growth
rates [Fig. 1(E)], indicating a strong constraint in proteome balancing between these compartments. Fur-
ther supporting this constraint, we find that the total partition of the proteome to these two compartments
(ψcyto + ψperi) remains constant across all growth conditions, accounting for ∼ 87% of the proteome mass
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Figure 1: Proteomic partitioning and growth relations across E. coli ’s cellular compartments. (A) E. coli ’s three distinct,
spatially separated compartments – the cytoplasm (gray), membranes (blue), and intermembrane space termed the periplasm
(purple). The proteome is partitioned between these compartments. The mass fraction of the total proteome occupied by
(B) the cytoplasm ψcyto, (C) the periplasm ψperi, and (D) inner and outer membranes ψmem as a function of the steady-state
growth rate. Dashed lines represent empirical linear regressions on the data, with slopes as follows: ψcyto →≈ 0.05 hr−1;
ψperi →≈ - 0.04 hr−1; ψmem →≈ −0.004 hr−1. (E) The linear trade-off correlation between the proteome allocation toward
the cytoplasm and periplasm with a slope of ≈ −1. (F) The sum total proteome mass fraction of the cytoplasm and
periplasm ψcyto + ψperi as a function of the growth rate. Dashed line is a linear regression on the data with a slope of ≈
0.004 hr−1.

[Fig. 1(F)]. This observation highlights a fundamental trade-off in how cells structure their proteomes; any
increase in cytoplasmic protein load is offset by a decrease in periplasmic protein load while the membrane
protein partitioning remains unchanged.
2.2 Densities Within the Cytoplasm and Membranes Are Maintained Across Conditions

Trade-offs in proteome functional composition have been well studied in E. coli, particularly the competitive
synthesis of metabolic and ribosomal proteins,3,7,32,33 which affects biosynthetic fluxes and growth dynam-
ics.11,34,35 We propose that the trends shown in Fig. 1 illustrate that proteome partitioning across cellular
compartments is governed by a qualitatively similar resource allocation constraint, but with a distinctly dif-
ferent underlying biophysical principle. In order to maintain macromolecular densities, which are critical in
controlling biochemical reaction rates36,37 and are thus subject to evolutionary optimization,38–40 changes
in proteome partitioning must be accompanied by compensatory changes in compartment size.

Using our direct measurements of cell size in addition to proteomic and bulk biochemical measurements
(see Methods), we examined how, if at all, the macromolecular masses (Fig. S4) and densities (Fig. 2) within
each compartment change across conditions. The cytoplasmic density ρcyto, comprised primarily by the
total protein and RNA mass per unit cytoplasmic volume, remains moderately stable across conditions at
approximately 400 fg / µm3, with a weak linear dependence on growth rate [Fig. 2(A)]. Similarly, we find
that the areal density of proteins within the membranes σmem is tightly constrained at approximately 3 fg
/ µm2, with minimal variation across conditions [Fig. 2(B)]. In contrast, the periplasmic protein density ex-
hibits a markedly different scaling behavior, decreasing from approximately 200 fg / µm3 to 50 fg / µm3

as a function of growth rate [Fig. 2(C)]. Despite this steep decline in periplasmic density, the total mass of
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Figure 2: Macromolecular densities within cellular compartments are tightly regulated. The major macromolecular densities
as a function of the growth rate in (A) the cytoplasm, (B) the membranes, and (C) the periplasmic space. (D) The ratio
of the cytoplasmic and membrane densities as a function of the growth rate. Points calculated from mass spectrometry
data as described in boxes. Total protein mass M(tot)

prot and total RNA mass M(tot)
RNA per cell for each sample was empirically

determined from independent quantification as described in the Appendix. Points represent the mean value of the posterior
probability distribution for each quantity. Extent of the thin and thick error bars correspond to the 95% (approximately 2σ)
and 68% (approximately 1σ) credible regions of the posterior distribution, respectively. Dashed lines represent fits to the
mean values.

periplasmic proteins per cell remains constant at approximately 20 fg for all growth conditions [Fig. S4(E)].
This observation suggests that periplasmic protein load, rather than the density, is homeostatically main-
tained.

While both the cytoplasmic density and membrane protein density exhibit slight negative linear depen-
dencies on growth rate, their ratio remains constant across conditions [Fig. 2(D)]. Given the prevalence
of interfacial biochemical interactions between the cytoplasm and the membranes, deviations from a con-
stant density ratio likely imposes large physiological costs. Thus, it is plausible that pressure to maintain this
density ratio influences cell geometry.
2.3 Deriving a Model of Density Maintenance

To better understand the constraints that a constant cytoplasm-membrane density [Fig. 2(D)] imposes on
cell geometry, we can mathematically examine how each density is defined. We make the well-motivated
assumption that the majority of the cytoplasmic biomass is composed of protein and RNA,41 yielding the
cytoplasmic density

ρcyto =
ψcyto M(tot)

prot + M(tot)
RNA

Vcyto
, (1)

where ψcyto represents the cytoplasmic proteome partition, M(tot)
prot is the total protein mass per cell, M(tot)

RNAis the total RNA mass per cell, and Vcyto is the total cytoplasmic cell volume, defined as the total cellular
volume V less the periplasmic volume, Vcyto = V − Vperi. Similarly, we define the areal density of proteins
within the cell membranes σmem as

σmem =
ψmem M(tot)

prot

Amem
, (2)
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where ψmem denotes the membrane proteome partition and Amem is the total membrane area of the cell,
including both inner and outer membranes.

We now introduce two simplifications. First, we consider that the total cytoplasmic volume Vcyto is
sufficiently larger than the total periplasmic volume Vperi, such that Vcyto ≈ V. Second, we assume that the
inner and outer membranes are narrowly spaced (measured periplasmic widths are ≈ 25 nm42) so that the
total membrane area is approximately twice the measured cell surface area, Amem ≈ 2SA.Applying these simplifications and taking the ratio of Eq. 1 and Eq. 2 yields an expression for the
cytoplasm-membrane density ratio κ:

κ ≡
ρcyto

σmem
=

ψcyto M(tot)
prot + M(tot)

RNA

V
× 2SA

ψmem M(tot)
prot

=

2
(

ψcyto +
M(tot)

RNA

M(tot)
prot

)
ψmem

× SA

V
. (3)

This expression makes explicit the dependence of κ on both the surface-to-volume ratio SA/V, a quantity
proposed as a "state variable" for bacterial morphogenesis,22 and the RNA-to-protein ratio M(tot)

RNA/M(tot)
prot , akey determinant of growth rate and a core component of the nutrient growth law.43 The density ratio κ thus

acts as a scaling factor linking cellular geometry to proteome partitioning and macromolecular composition,
embedding both geometric and biosynthetic constraints.

Given that proteins are partitioned among three compartments (Fig. 1(A), ψcyto + ψmem + ψperi ≈ 1) and
that the RNA-to-protein ratio is directly related to the ribosomal fraction of the total proteome (termed the
ribosomal proteome allocation ϕrib) with a proportionality constant β (see Appendix), Eq. 3 can be rewritten
as

SA

V
=

κψmem

2
(
1 − ψmem − ψperi + βϕrib

) , (4)
which expresses the cellular geometry in terms of the proteome partitioning and the proteomic allocation
towards ribosomes.
2.4 Measurements of Surface-to-Volume and Proteomic Composition Agree With Theoretical

Predictions

Equation 4, schematized in Fig. 3(A), provides a quantitative prediction for how the cellular geometry, de-
fined by the surface-to-volume ratio SA/V, scales with the composition and localization of the proteome
under the assumption that the cytoplasm-to-membrane density ratio κ remains constant. In particular, this
framework predicts that SA/V is determined by the proteome fraction partitioned to membranes ψmem and
the periplasm ψperi, and the ribosomal proteome allocation ϕrib, linking cell size regulation directly to pro-
teome composition. We sought to determine whether the observed SA/V follows the expected non-linear
dependence on ϕrib as prescribed by Eq. 4.

Theoretical and experimental dissections of the nutrient growth law3,7,8,11 have established that the
ribosomal proteome fraction ϕrib increases from approximately 5% to 30% of the total proteome from slow
to fast growth conditions, respectively [Fig. S1(A)]. If ϕrib serves as a control variable for growth, then
our density maintenance model predicts a corresponding non-linear scaling of SA/V. However, accurately
making this prediction requires empirical knowledge of how ψperi and ψmem change as a function of ϕrib.Using our mass spectrometry measurements, we characterized these dependencies and found that ψmem
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Figure 3: A density maintenance theory quantitatively predicts scaling between surface-to-volume ratio (SA/V) and
proteome allocation towards ribosomes ϕrib. (A) The density maintenance theory as derived in the text with the density
ratio κ, membrane proteome partition ψmem, periplasmic proteome partition ψperi, and RNA/protein ratio βϕrib highlighted
in red, blue, purple, and gold, respectively. (B) The empirical linear (approximately constant) relationship between membrane
proteome partition and ribosomal proteome allocation. (C) The empirical exponential relationship between periplasmic
proteome partition and ribosomal proteome allocation. (D) Predicted scaling of surface-to-volume SA/V on the ribosomal
proteome allocation ϕrib for different values of the density ratio κ (grey lines). Green curves correspond to fit of Eq. 4 to our
data, using the empirical relationships shown in (B) and (C). Lines correspond to the mean value of the posterior predictive
distribution. Shaded bands correspond to the 95% (pale, approximately 2σ) and 68% (light, approximately 1σ) credible
regions of the posterior predictive distribution for each quantity. White-faced points correspond to our direct measurements
of allocation parameters via mass spectrometry and SA/V via microscopy.

remains nearly constant, while ψperi exhibits an approximately exponential decline as a function of ϕrib[Fig. 3(B, C)]. Using a Bayesian inferential model to quantify our uncertainty (Methods and Appendix), we
parameterized these relationships and integrated them into our theoretical predictions.

We then evaluated Eq. 4 under different candidate values for κ and found that the predicted SA/V
exhibits a strong non-linear dependence on ϕrib [Fig. 3(D), grey lines], covering a physiologically plausible
range of values for SA/V between ≈ 3 and 10 µm−1. Using a Bayesian statistical model, we inferred the
best-fit value of κ = 134 ± 3 µm−1 to our direct measurements of SA/V [Fig. 3(D), markers and green
bands]. We find that this model describes our observations with notable quantitative accuracy.
2.5 Perturbations of Intracelluar ppGpp Concentrations Predictably Alter Cell Geometry

Fig. 3 suggests that the surface-to-volume ratio SA/V can be accurately described by a simple model
defined by a constant cytoplasm-membrane density ratio κ and a variable ribosomal allocation ϕrib. Ourdata thus far comes from cells grown in different carbon sources with a range of growth rates, and therefore
a range of ϕrib. However, our model (Eq. 4) does not explicitly depend on the cellular growth rate nor the
specifics of the environment. To confirm this independence, we perturbed ϕrib within a single nutrient
condition by modulating the intracellular concentration of the global regulator guanosine tetraphosphate
(ppGpp),6,44 and measured the consequences on cell size and proteomic composition.

To systematically alter ppGpp levels, we employed a genetic system developed by Büke et al.45 that
enables tunable expression of RelA and MeshI, enzymes that synthesize and degrade ppGpp, respectively
[Fig. 4(A)]. By titrating the expression of these enzymes in two growth conditions – glucose and glucose sup-
plemented with casamino acids (glucose+CAA) – we directly measured the resulting changes in proteomic
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composition, partitioning, growth rate, and surface-to-volume ratio. Under Eq. 4, we would expect that in-
creasing ppGpp levels would decrease ϕrib, leading to an increase in SA/V, while decreasing ppGpp should
have the opposite effect. Since ribosome content is typically growth-optimized within a given condition,11
these perturbations also provide a test of whether Eq. 4 correctly predicts SA/V independently of growth
rate.

Inducing the expression of MeshI, which decreases ppGpp, or RelA, which increases ppGpp, altered
ribosomal proteome allocation ϕrib [Fig. 4(B)], growth rate [Fig. 4 (C)], and surface-to-volume ratio [Fig.
4(D)] in the qualitatively predicted directions. Specifically, induction of MeshI or RelA altered the ribosomal
proteome allocation ϕrib as anticipated, with corresponding shifts in growth rate and SA/V in both growth
conditions [Fig. 4(B)]. These results confirm that the ppGpp perturbations directly modulate ribosomal
allocation and allow us to assess their impact on cell geometry independent of the growth rate [Fig. S5(A)].

To quantitatively compare the predicted and measured SA/V under ppGpp perturbations, we deter-
mined the partitioning and allocation parameters in Eq. 4 from mass spectrometry measurements and as-
sumed that κ remains fixed at the inferred value of κ = 134 ± 3 µm−1 [Fig. 3(D)]. For MeshI induction [Fig.
4(E), (ii) → (i)], the predicted and measured SA/V are in strong quantitative agreement for both glucose
and glucose+CAA conditions, with values falling within experimental variation of the wild-type strain. For
RelA induction [Fig. 4(F), (iii) → (iv) → (v)], we find that predicted and measured SA/V agree well within
the glucose+CAA condition but diverge in the glucose-only condition at high RelA expression levels. In
this scenario, Eq. 4 predicts SA/V ≈ 12 µm−1, which deviates significantly from the measured values of
SA/V ≈ 7 [Fig. 4(D)]. We hypothesize that RelA induction in glucose pushes the system into a regime
where maintenance of a constant density ratio is not physiologically possible. Indeed, empirical measure-
ments of the cytoplasm-membrane density ratio under these conditions [Fig. S5(B), see Methods] reveal a
decrease to approximately 100 µm−1. This suggests that the assumption of a constant density ratio breaks
down due to a physical upper bound in SA/V ≈ 8 µm−1 (dashed line). Given a rod-shaped bacterium, this
SA/V corresponds to a cell width w ≈ 0.5 µm, in line with the reported observed minimum width of E. coli
[Fig. S2(E)]. Maintaining a constant density ratio for the high RelA induction conditions in glucose would
require cells to adopt a width of ≈ 0.25 µm, well below this physiological limit. This establishes a boundary
of validity for the density maintenance model, providing insight into the range of conditions under which
proteome composition alone can predict cellular geometry.

3 Discussion

In this work, we take a holistic approach towards understanding the interconnections between cellular com-
position, proteome localization, and cellular geometry. We propose a concrete, biophysical principle that
lies at the center of this regulation – that macromolecular densities within the cytoplasm and the areal den-
sity of proteins in the cell membrane are maintained within a narrow range. This constraint emerges from
simultaneous control over the size of each cellular compartment and the partitioning of the proteome be-
tween them. Motivated by these observations, we derive a simple mathematical model that quantitatively
relates the cellular geometry, namely the surface-to-volume ratio, to the partitioning of the proteome be-
tween compartments and the functional composition of the proteome, principally the proteome fraction
composed of ribosomes. We conducted a suite of experimentsmeasuring steady-state growth rate, cell size,
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and proteome composition across a broad range of conditions and genetic perturbations. To our knowledge,
this is the only data set with simultaneousmeasurements of these quantities with sufficient statistical power
to test our biophysical model. Using this data set, we demonstrate that this model of density maintenance
quantitatively predicts how the surface-to-volume ratio is dependent on the steady-state proteome compo-
sition and localization. As such, this approach demonstrates that cell composition, rather than bulk growth
rate, is a major determining factor of cell size control.

Beyond our own observations, we find that this picture stands in good agreement with the literature
examining what does (and does not) alter cell size across conditions. For example, Basan et al.28 utilized the
strong over-expression of a non-needed cytoplasmic protein, to drastically change composition. As antici-
pated by our theory, the authors report that width and the average cell size increased considerably while
total drymass density was maintained. Furthermore, as our theory does not include any rate parameters
or binding constants, we would expect its predictions to be independent of temperature. Indeed, this is
consistent with previous studies showing that cell composition and size are both well-maintained across
wide temperature ranges, while the growth rate is strongly temperature dependent.43,46–50 Finally, while
we focus in this work on E. coli, there is evidence that density maintenance may be a more general property
across the microbial world. For example, recent work in Corynebacterium glutamicum,51 a gram-positive bac-
terium, reveals a strong correlation between the surface-to-volume ratio and the RNA-to-protein ratio that
is consistent with our theoretical predictions. Similarly, the methanogenic archaeon Methanococcus mari-
paludis demonstrates a fixed composition across growth conditions and, in line with our theory, a constant
cell size.52 In total, a hypothesis that cells prioritize the maintenance of macromolecular densities and do
so through control of cell geometry is strongly supported by a litany of observations which have at times
seemed incongruous.

Recently, Büke et al.45 demonstrated that ppGpp directly altered average cell volume in a manner that
was uncoupled from the bulk growth rate. While unequivocally establishing a relationship between ppGpp
concentration and cell size, the precise mechanism underlying this connection remains unclear. Our hypoth-
esis of density maintenance provides a natural explanation—intracellular ppGpp pools modulate ribosomal
content by regulating the expression of ribosomal rRNA and protein genes, thereby altering cellular compo-
sition and, in turn, cell geometry. Otherwork byHarris & Theriot22 has proposed that the surface-to-volume
ratio is a quantity that cells actively monitor and homeostatically control through the coordination of vol-
ume and surface expansion. Our work builds upon this idea by providing a plausible biophysical principle
by which SA/V can be regulated, as illustrated in Panel A of Fig. 5. Throughout the cell cycle, rod-shaped
bacterial cells maintain a fixed width while their length increases, and so long as the length remains signifi-
cantly larger than the width (ℓ ≫ w), the surface-to-volume ratio follows the simple relation SA/V ≈ 4/w.
This implies that rather than directly monitoring both surface area and volume, cells could achieve robust
control over SA/V simply by regulating their width. Under this framework, maintaining a constant density
ratio κ provides a natural feedbackmechanism linking biochemical composition tomorphological regulation,
ensuring that cell geometry is tuned to maintain homeostasis across different conditions.

This model begs two fundamental molecular questions: how could cells sense densities and how is
sensing coupled to width control? We speculate that the Rod complex lies at the heart of both of these
questions. The Rod complex is a large protein assembly53–55 found across the bacterial tree of life,56 which
rotates about the long axis of the cell along the inner membrane expanding the cell wall and, therefore,
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growth rate
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density
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resource
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Figure 5: Growth rate as an emergent property of compositional and geometric regulation. (A) The cell length changes
over the course of the cell cycle, approximately doubling the cell volume, but the cell width remains approximately constant
within a given growth condition. The SA/V (bottom) of a rod-shaped cell is therefore approximately constant across the
cell cycle. (B) Chemical details of the environment set the cellular composition through sensory pathways and integrated
regulation of gene expression. Given the cellular composition, the bulk growth rate is determined via the regulation of
metabolic and translational fluxes, setting cellular composition. Simultaneously and following our density maintenance
theory pressure to constrain macromolecular densities within the cytoplasm and membrane protein densities within the
membrane determines cellular geometry.

increasing the cell volume and surface area.57,58 While lengthening the cell over the course of the cell cycle,
the Rod complex also determines the width of the cell,54,59,60 thereby controlling the surface-to-volume
ratio. Thus, for densities in the cytoplasm and membrane to be effectively maintained, the activity of the
Rod complexes must be controlled accordingly. As the Rod complex rotates through both the cytoplasmic
and membrane environments, it is subjected to density-dependent forces. We thus think it is plausible that
the action of the Rod complex is modulated by membrane and cytoplasmic densities to ensure coordination
of length increase and width control. As genetic perturbations of various Rod complex components have
been shown to strongly affect cell size and shape homeostasis,60,61 we speculate that they may together
act also as “sensor" of the relative density between the membrane and cytoplasm.

Despite evidence that growth rate regulation and cell size control are uncoupled in various situations–
such as through temperature variation– growth rate is commonly viewed as a control variable for bacterial
physiology as a whole. However, we argue that growth should be thought of as an emergent property of
the cellular physiology, as is cell size. We view the cell composition as being set by the coordination of gene
expression following from sensing of the cells’ environment and its metabolic state. Growth rate emerges
from the relative rates of metabolism and translation resulting from this composition.11 Separately, as we
have demonstrated in this work, the pressure to maintain macromolecular densities within the cytoplasm
and membrane compartments strongly constrains the cellular geometry. As a consequence, strong corre-
lations between cell size and growth rate can emerge even without a direct causal link between them [Fig.
5(B)]. Thus, approaches to understand cell physiology should not rely on growth rate as an explanatory
process, but rather the fundamental physical and chemical limits that cells must obey and can plausibly
biochemically measure.
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4 Methods

4.1 Bacterial Strains and Cell Husbandry

Experiments performed in this work were conducted using Escherichia coli K-12 strain NCM3722 sup-
plied from the laboratory of Terence Hwa at UCSD, originally obtained from the laboratory of Sydney
Kustu.62 Perturbations of intracellular ppGpp concentrations were performed using a genetic system as
described in Büke et al.45 These plasmids (without fluorescent tags) were ordered fromAddGene (pRelA’ Ad-
dGeneID:175595; pMeshI AddGeneID:175594) and transformed individually into our lab stock ofNCM3722
on appropriate selection conditions. All used strains are listed in Appendix Table 2. Culturing plasmids were
performed under either Ampicillin (pMeshI; 100 µg / mL) or Kanamycin (pRelA; 50 µg/mL) selection.

To ensure sample analysis at steady-state, cells were processed through three different cultivation steps
before samples were taken. To start, "seed culture” was grown in Miller LB rich medium (Fisher Scientific,
Cat. No. BP1426) from a single colony on an LB agarose plate. This seed culture was grown in a 37◦
C waterbath shaker under constant aeration (shaking at 240 rpm) for several hours until the culture was
saturated. This seed culture was then diluted at least three hundred fold into fresh LB media or a minimal
phosphate buffer medium (5.7 mMK2SO4, 77.6 mMKH2PO4, 34.6 mMKH2PO4, 400 µMMgSO4, 43.1 mM
NaCl, 10 mM NH4Cl) supplemented with a carbon source (either 30 mM acetate, 10 mM sorbitol, 10 mM
glycerol, or 10 mM glucose) or mix of carbon sources (glucose + acetate or glucose + 0.1% w/v casamino
acids). This culture, the "pre-culture condition”, was then allowed to grow under constant aeration until
an optical density OD600nm ≈ 0.3 − 0.4 (Thermo Scientific Genesys 30, 1-cm path length cuvette) was
reached. This culture was the diluted ten fold into 15 mL of fresh medium with the same composition,
pre-warmed to 37◦ C. This culture, the "experimental culture”, was then grown in identical conditions as
the pre-culture. Growth curves were obtained by regular OD600 measurements while the culture remained
between an optical density range of OD600nm ≈ 0.04 − 0.5. For strains with ppGpp perturbations, the seed
culture was grown in a glucose-supplemented minimal medium. Once the seed culture reached an optical
density OD600nm between 0.3 − 0.4, the culture was diluted two-thousand fold into a fresh, prewarmed
glucose minimal medium supplemented with the appropriate amount of inducer, either doxycycline (dox,
Sigma, Cat. No. D5207) or Isopropyl β- d-1-thiogalactopyranoside (IPTG, Goldbio Cat. No. 12481C5) for
RelA and MeshI induction, respectively.

During the growth of the experimental culture, samples were taken and processed for cell size measure-
ment and mass spectrometry as described briefly below. All cultivation steps were performed in glass tubes
with at least four volumes of head space for sufficient gas exchange and aerobic growth.
4.2 Quantification of Cell Size

From a steady-state culture, 2 µL was transferred onto a 1% agarose pad supplemented with isotonic mim-
imal medium buffer base. After drying for 2 - 3 minutes, this pad was mounted on a slide, covered with
a coverslip, and imaged under 100X phase-contrast microscopy using a Zeiss AxioVert 200M microsope
outfitted with an AmScopeMU1003 CMOS camera. Images were transferred to a back-up server and were
later processed using in-house image processing Python code, as described in the Appendix.
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4.3 Proteome Quantification via Mass Spectrometry

Cultures were grown to a final OD600nm ≈ 0.4 − 0.5 and were then harvested for proteomic analysis. An
aliquot of 12 mL of the steady-state culture was removed from the culture vessel and transferred to a 14
mL centrifuge tube. Cells were pelleted at 3000 ×g for 10 min at 4 ◦C. All but 1 mL of the supernatant
was carefully decanted and transferred to a clean 14 mL centrifuge tube. The pellet was resuspended in
the residual 1 mL of supernatant and transferred to a 1.5 mL eppendorf tube and pelleted at 3000×g for 1
min at 4 ◦C. The supernatant was removed and added to the decanted supernatant and thoroughly mixed.
The OD600nm of this pooled supernatant was recorded to correct for cell loss. The pellet was then frozen at
-80 ◦C for later proteomic analysis.

When ready for proteomic processing, pellets were removed from the -80 ◦C and thawed on ice. The
pellets were then resuspended in a denaturation/reduction buffer (0.07MTris-Cl, 5% (v/v) mercaptoethanol,
0.6% (w/v) SDS and 15% (v/v) glycerol) by boiling for 10 min at 95 ◦C with intermittent vortexing. Debris
was pelleted by centrifugation for 10 minutes (10,000×g). Cleared supernatants were alkylated with 5mM
iodoacetamide, and then precipitated with three volumes of a solution containing 50% acetone and 50%
ethanol. Proteins were re-solubilized in 2 M urea, 50 mM Tris-HCl, pH 8.0, and 150 mM NaCl, and then di-
gested with TPCK-treated trypsin (50:1) overnight at 37 ◦C. Trifluoroacetic acid and formic acid were added
to the digested peptides for a final concentration of 0.2%. Peptides were desalted with a Sep-Pak 50mg
C18 column (Waters). The C18 column was conditioned with 500 µL of 80% acetonitrile and 0.1% acetic
acid and then washed with 1000 µL of 0.1% trifluoroacetic acid. After samples were loaded, the column
was washed with 2000 µL of 0.1% acetic acid followed by elution with 400 µL of 80% acetonitrile and 0.1%
acetic acid. The elution was dried in a Concentrator at 45 ◦C. De-salted peptides were resuspended in 0.1%
Formic acid.

For each sample, 25 µg of desalted peptide samples were resuspended in 20 µL of 100 mM Triethylam-
monium bicarbonate solution and labeled with 16-plex TMTpro at a ratio 4:1 (TMT:peptide). Total reaction
volume was less than 25 µL. The labeling reaction was quenched with a final concentration of 0.5% hy-
droxylamine for 15 min. Labeled peptides were pooled and acidified to pH ∼ 2 using drops of 10% TFA.
Excess TMT label was removed by re-running the pooled sample through a Sep-Pak 50-mg C18 column (as
described above).

TMT-labeled peptides were resuspended in 0.1% formic acid analyzed on a Fusion Lumos mass spec-
trometer (Thermo Fisher Scientific, San Jose, CA) equipped with a Thermo EASY-nLC 1200 LC system
(Thermo Fisher Scientific, San Jose, CA). Peptides were separated by capillary reverse phase chromatog-
raphy on a 25 cm column (75 µm inner diameter, packed with 1.6 µm C18 resin, AUR2-25075C18A,
Ionopticks, Victoria Australia). Peptides were introduced into the Fusion Lumos mass spectrometer using
a 180-min stepped linear gradient at a flow rate of 300 nL / min. The steps of the gradient are as follows:
6–33% buffer B (0.1% (v:v) formic acid in 80% acetonitrile) for 145min, 33-45% buffer B for 15min, 40–95%
buffer B for 5 min and maintain at 90% buffer B for 5 min. The column temperature was maintained at 50
◦C throughout the procedure. Xcalibur software (v.4.4.16.14) was used for the data acquisition and the
instrument was operated in data-dependent mode. Advanced peak detection was disabled. Survey scans
were acquired in the Orbitrap mass analyzer (centroid mode) over the range 380–1,400 m/z with a mass
resolution of 120,000 (at m/z 200). For MS1, the normalized AGC target (%) was set at 250 and maximum
injection time was set to 100 ms. Selected ions were fragmented by collision-induced dissociation (CID)
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with normalized collision energies of 34 and the tandem mass spectra were acquired in the ion trap mass
analyzer with the scan rate set to ‘Rapid’. The isolation window was set to the 0.7 m/z window. For MS2,
the normalized AGC target (%) was set to ‘Standard’ and maximum injection time to 35 ms. Repeated se-
quencing of peptides was kept to a minimum by dynamic exclusion of the sequenced peptides for 30 s. The
maximum duty cycle length was set to 3 s. Relative changes in peptide concentration were determined at
the MS3 level by isolating and fragmenting the five most dominant MS2 ion peaks.

All raw files were searched using the Andromeda engine embedded inMaxQuant (v2). Reporter ionMS3
search was conducted using TMTpro (16-plex) isobaric labels. Variable modifications included oxidation (M)
and protein N-terminal acetylation. Carbamidomthyl (C) was a fixed modification. The number of modifica-
tions per peptide was capped at five. Digestion was set to tryptic (proline-blocked). Database search was
conducted using the UniProt proteome - Ecoli_UP000000625_83333. The minimum peptide length was 7
amino acids. 1% FDR was determined using a reverse decoy proteome.

To calculate the proteomemass fraction of eachmapped protein, we utilized the peptide feature informa-
tion inMaxQuant’s evidence.txt output file. Each row of the evidence.txt file represents an independent
peptide and its corresponding MS3 reporter ion measurements. Peptides without signal in any of the TMT
channels were excluded. Peptide measurements were assigned to a protein based on MaxQuant’s ’Leading
razor protein’ designation. For each individual peptide measurement (i.e., each row in the evidence table),
the fraction of ion intensity in each TMT channel was calculated by dividing the ’Reporter ion intensity’ col-
umn by the sum of all reporter ion intensities. To correct for loading differences between the TMT channels,
each reporter ion channel was then normalized by dividing the fraction of ion intensity in each channel by
the median fraction for all measured peptides (i.e., the median value for each column). This normalization
scheme ensures that each individual peptide measurement is equally weighted when correcting for loading
error. To calculate proteome mass fractions, the MS1 precursor ion intensity of each peptide measured (the
"Intensity" column in the evidence.txt table) was distributed between the individual MS3 reportion chan-
nels according to the loading-normalized value described. Protein-level ion intensities were then calculated
for each TMT channel by summing together all peptides ion intensities for each protein.
4.4 Quantification of Total RNA and Protein Masses

The total RNA and total protein measurements needed to calculate the compartment densities in Fig. 2
were measured from cultures independent of those used for mass spectrometry and size quantification.

Briefly, cells were cultured in a basic buffer medium as described above and harvested at an OD600nm ≈
0.5. The Biuret method63 was used for total protein quantification. For each culture, an aliquot of 1.8 mL
of cell culture was transferred to a clean 2 mL test tube and were pelleted at 16,000 ×g for 1 minute. The
supernatant was removed and the OD600nm was measured to correct for cell los. The pellet was washed
with 1 mL of ddH2O and pelleted again at 16,000 ×g. The supernatant was again carefully removed and
the OD600nm was determined. The pellet was resuspended in 200 µL of ddH2O and transferred to a -80 ◦C
freezer for 10 minutes. Once frozen, pellets were transferred to an ice bath and 100 µL of 3M NaOH was
added to the pellets, followed by boiling at 100 ◦C for 5 minutes, followed by a 5 min cool-down at room
temperature. A 100 µL aliquot of 1.6% CuSO4 was added to the disrupted cell pellet, shaken vigorously, andincubated at room temperature for 5 min. The slurry was then centrifuged at 16,000 ×g for 3 minutes and
the OD555nm. This was converted to a concentration using a calibration curve of known BSA concentrations.
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Total RNA quantification was performed as described previously.64 Briefly, a 1.5 mL aliquot from the
steady-state culture was removed and transferred to a 2 mL test tube. Cells were pelleted at 16,000 ×g
for 3 min. The supernatant was carefully removed and the OD600nm was determined to correct for cell loss.
The pellet was washed twice with 600 µL of 0.7 mM HClO4 at 4 ◦C with the supernatants pooled and
their combined OD600nm determined. The washed pellet was resuspended in 300 µL of 0.3 M KOH and
was incubated at 37 ◦C with shaking for 1 hr. RNA was extracted from the digested cell solution by adding
100 µL of 3M HClO4 and debris was pelleted at 16,000 ×g for 1 min. The supernatant was removed and
transferred to a new 2 mL test tube. The debris pellet was washed twice with 550 µL 0.5 M HClO4 kept at4 ◦C and supernatants were pooled. The UV absorption of the supernatant at 260nm was measured and
total RNA was calculated using a conversion factor of 31 µg / A260nm.

Total cell counts for each growth condition were quantified using flow cytometry. Briefly, cells were
grown in the appropriate growth medium to an OD600nm ≈ 0.2− 0.4 and 500 µL was transferred to a sterile
1.5 mL eppendorf tube. A volume of fixation buffer (PBS with 0.9% NaCl and 0.12% formaldehyde) was
added to the cells and gently mixed. To 810 µL of buffered DAPI (0.9% NaCl with 1 µg/mL DAPI), 100 µL of
the above cell sample was added. This was incubated on ice for 3 minutes. Samples were then injected and
analyzed in a BD FACSymphony A5 Cell Analyzer with a SSC gain of 1000 and flow rate of 1 µL / s. Signal
was collected for 100 seconds per sample. All objects which were DAPI positive were noted as individual
cells. We found that applying an automated gating procedure (described in Razo-Mejia et al.65) did not
significantly influence our estimate of cells per unit biomass.
4.5 Quantification of Cellular Growth Rate

During the steady-state growth, the OD600nm was measured at regular intervals using a Thermo Scientific
GENESYS 30 Spectrophotometer. For each growth cycle, the growth rate was determined by performing
a linear regression on the log-transformed optical density measurements within the linear range of the
spectrophotometer (0.04 - 0.5 for our specific spectrophotometer). This was performed on a per-replicate
basis and the results of the fittingwere saved and collated as a CSV file. The linear regressionwas performed
using the linregress function in the Python scipy.stats library (version 1.10.0) using default parameters.
4.6 Localization Annotation of Proteomic Data

The localization of each protein detected within our mass spectrometry measurements was determined
using the localization criteria defined in Babu et al. 2018.31 Proteins detected in our experiments yet not
annotated or located within the Babu et al. annotation form were dropped from all subsequent analysis. In
total, this occurred only for 14 proteins accounting for at most 0.1% of the total proteome mass.
4.7 Calculation of Compartment Densities

In this work, we used bulk-measurements of total protein and total RNA coupled with partitioning informa-
tion from our quantitative mass spectrometry measurements to estimate the protein masses and densities
within each compartment for our wild-type E. coli strains [Fig. S4(A)]. For each compartment, the total

14



protein mass in each compartment M(compartment)
prot was calculated as

M(compartment)
prot = ψcompartment M

(tot)
prot (5)

where ψcompartment denotes the proteome partitioning to that compartment and M(tot)
prot denotes the total

protein mass per cell, determined from bulk measurements. However, we did not directly measure the
total protein per cell for each mass spectrometry measurement. To do so, we instead assumed that the
total protein per cell scaled exponentially as a function of the growth rate λ, and used the resulting fit to
estimate the total protein per cell for samples subjected to mass spectrometry quantification given their
measured growth rate. To perform this fit, we used a Bayesian inferential model to compute the posterior
distribution over the parameters of the exponential fit as well as the expected homoskedastic measurement
error. Details of this inference, along with choice of priors and appropriate transformations, are given in the
Appendix. The result of this fit is shown in Fig. S4(B).

For the cytoplasmic density, we made the well-justified assumption that the majority of cytoplasmic
mass is composed of protein and RNA4,41 with DNA contributing a negligible fraction of the mass. Thus,
the cytoplasmic density was defined by the proteome mass of the cytoplasm and the total cellular RNA. As
in the case of total protein, we did not directly measure total RNA for every sample subjected to mass spec-
trometry. We assumed that the total RNA mass per cell M(tot)

RNA also scaled exponentially with the cellular
growth rate and used the resulting fit to estimate the RNA for our samples subjected to mass spectrometry.
We also used a Bayesian inferential model for this estimation, described in the appendix. The resulting fit
is shown in Fig. S4(C).
4.8 Bayesian Inference

Throughout this work, we use Bayesian inferential models to quantify our uncertainty in our estimate of a
quantity, such as the compartment densities or the density ratio parameter κ. While details change from
model-to-model, the same basic approach applies which we outline here. We adopt a Bayesian definition of
probability and seek to evaluate the posterior probability distribution g(θ | y) of a parameter θ conditioned
on a set of measurements y. Using Bayes’ theorem, this can be computed as

g(θ | y) =
f (y | θ)g(θ)

f (y)
, (6)

where g and f denote probability density functions over parameters and data, respectively. For the data
observed in this work, we used a Gaussian distribution for the likelihood function f (y | θ) for the parame-
ter(s) of interest with a model-dependent mean µ and standard deviation σ. The choice of prior distribution
g(θ) was dependent on the precise parameter being inferred (see Appendix). For this work, the denomina-
tor f (y) of Eq. 6 was treated as a normalization constant and was therefore neglected in the estimation.
All statistical modeling and parameter inference was performed using Markov chain Monte Carlo (MCMC).
Specifically, we used Hamiltonian Monte Carlo sampling as is implemented in the Stan programming lan-
guage.66 To assess the accuracy of our inference, we evaluated the posterior predictive distribution by
randomly sampling values from the likelihood function f (y | θ) for each MCMC sample of θ. From this dis-
tribution, we then calculated the arithmetic mean and the bounds of the 68% and 95% percentiles which

15



correspond to approximately 1σ and 2σ of a Gaussian distribution. All statistical models are defined as Stan
files are available on the paper’s GitHub repository github.com/cremerlab/density_maintenance accessible
via DOI: 10.5281/zenodo.10048570.
4.9 Calculation of the cytoplasm-membrane density ratio for ppGpp perturbations

In Fig. S5(B), we report the estimated cytoplasm-membrane density ratio for each ppGpp perturbation mea-
surement. To do so for the wildtype strains, we used our inferred trends in the per-cell total protein M(tot)

prot

and total RNA M(tot)
RNA masses as a function of growth rate. However, for our MeshI and RelA perturbation

studies, these quantities do not necessarily scale in the same way with the growth rate. Thus, to calcu-
late the cytoplasm-membrane density ratio, we made the well-motivated approximation that the total RNA
mass can be calculated as

M(tot)
RNA ≈

∼ M(tot)
RNA

M(tot)
prot︷︸︸︷

βϕrib M(tot)
prot , (7)

where β is a constant of proportionality that can be directly calculated3 (Appendix). Using this approxima-
tion, the cytoplasm-membrane density ratio can be directly computed from the measured partitioning and
allocation parameters determined via mass spectrometry and cell size measurements via

ρcyto

σmem
≈

ψcyto M(tot)
prot + βϕrib M(tot)

prot

ψmem M(tot)
prot

× Amem

Vcyto
=

ψcyto + βϕrib

ψmem
× 2SA

V − wperiSA
, (8)

where Amem is the total membrane area, Vcyto is the cytoplasmic cell volume, SA is the cellular surface area,
and wperi is the average width of the periplasmic space.
4.10 Code and Data Availability

All Python code, Stan probabilistic models,and processed data sets are available on the paper’s GitHub
repository DOI:10.5281/zenodo.10048570 accessible via github.com/cremerlab/density_maintenance.
Raw microscopy images are available to download from the Stanford Data Repository accessible via DOI:
10.25740/ws785mz0287.
4.11 Literature Sources

In this work, we used a large collection of datasets from the literature to evaluate the consistency of our
measurements and guide our analysis. These sources are cited where used within the figures. Here, we
cite all of these sources for proper referencing and bibliometrics: proteomic measurements;32,67–73 cell size
measurements;18,28,74–77 Total protein, total RNA, and RNA/protein.3–5,14,18,28,29,34,41,78–84
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Figure S1: The compositional and geometric growth laws of E. coli. (A) The compositional growth law–also termed the
"nutrient growth law"–noting that the bulk RNA-to-protein ratio scales approximately linearly with the steady-state growth
rate. (B) The volume growth law noting that E. coli ’s average cell volume scales approximately exponentially with the bulk
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Figure S2: Comparison of measurements from this study with those from the literature. (A–D) Comparison of mass
spectrometry measurements from this study (white-faced circles) with reported literature E. coli proteomics data, grouped
by Clusters of Orthologous Groups (COG85) functional annotation. (A) Metabolism; COG Letters: C, G, E, F, H, I, P, Q.
(B) Information storage and processing; COG Letters: J, A, K, L, B. (C) Cellular processes and signaling; COG letters: D,
Y, V, T, M, N, Z, W, U, O. (D) Other; COG Letters: R, S. (E–H) Comparison of average cell dimensions from this study
(white-faced circles) and literature studies (markers). (I–K) Comparison of bulk biochemical measurements from this study
(white-faced diamonds) with literature measurements. Citations for literature studies are provided in methods.
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Figure S3: Functional composition of proteomics data within different compartments. Total fraction of proteome occupied
by each COG category in the (A) cytoplasm, (B) periplasm, and (C) membranes. COG categories are the same as described
in Fig. S2.
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Figure S4: Total compartment masses per cell. (A) The mass of a compartment Mcompartment is defined as the product of

the proteome allocation ψcompartment with the total per-cell protein mass M(tot)
prot . For the cytoplasm, total mass includes

the total RNA mass MRNA. (B) Total protein per cell and (C) total RNA per cell measured in bulk for this study are
shown as white-diamonds. Shaded regions correspond to the credible regions of the Bayesian statistical model described
in the Appendix. (E) Total RNA + protein mass within the cytoplasm as a function of growth rate. (F) Total protein
mass within the periplasm as a function of growth rate. (G) Total protein mass within the membranes as a function of
growth rate. Points denote the mean of the posterior probability distribution estimated for each quantity. Thin and thick
error bars denote the extent of ± 2 σ and ± 1 σ of the posterior distribution. Dashed lines correspond to empirical fits to
the posterior means. Cytoplasmic and membrane masses assumed to scale exponentially with the growth rate while the
periplasmic mass was assumed to scale linearly.

19



0.25 0.50 0.75 1.00 1.25 1.50
growth rate [hr−1]

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

S A
/V

su
rf

ac
e-

to
-v

o
lu

m
e 

[µ
m

−
1

]

0.25 0.50 0.75 1.00 1.25 1.50
growth rate [hr−1]

50

75

100

125

150

175

200

225

250
cy

to
p

la
sm

-m
em

b
ra

n
e

d
en

si
ty

 ra
ti

o

 [µ
m

−
1

]
glucose+CAA

glucose

-IPTG (ii)

+IPTG (i)

-dox (iii)
+dox (iv)
++dox (v)

relA

meshI

(A) (B)

(ii)

(ii)

(i)

(i)

(iii)

(iii)

(iv)

(iv)

(v)

(v)

wildtype

Figure S5: Changes in SA/V and the cytoplasm-membrane density ratio under perturbation of intracellular ppGpp
concentrations (A) Perturbations of intracellular ppGpp concentrations break the dependence of SA/V on growth rate. The
measured surface-to-volume ratio SA/V is plotted as a function of the steady-state growth rate. MeshI induction in glucose
(diamonds) and glucose+CAA (squares) is denoted as trajectory (ii) → (i) while RelA induction in each condition is denoted
as trajectory (iii) → (iv) → (v), following the notation shown in Fig. 4. Induction of MeshI (dark gold) decreases both the
growth rate and the SA/V strongly deviating from the wildtype trend. (B) Empirically determined cytoplasm-membrane
density ratio for ppGpp perturbation experiments as calculated in Eq. 8. Values for ppGpp perturbation strains are shown in
colors and were calculated as described in Methods. MeshI was induced with IPTG ( − : 0 µM + : 100 µM ) and RelA was
induced with doxycycline (− : 0 ng/mL; + : 2 ng/mL, ++ : 4 ng/mL).
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