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Abstract
It is tempting to believe that we now own the genome.The ability to read and
rewrite it at will has ushered in a stunning period in the history of science.
Nonetheless, there is an Achilles’ heel exposed by all of the genomic data that
has accrued: We still do not know how to interpret them. Many genes are
subject to sophisticated programs of transcriptional regulation, mediated by
DNA sequences that harbor binding sites for transcription factors,which can
up- or down-regulate gene expression depending upon environmental con-
ditions. This gives rise to an input–output function describing how the level
of expression depends upon the parameters of the regulated gene—for in-
stance, on the number and type of binding sites in its regulatory sequence. In
recent years, the ability to make precision measurements of expression, cou-
pled with the ability to make increasingly sophisticated theoretical predic-
tions, has enabled an explicit dialogue between theory and experiment that
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holds the promise of covering this genomic Achilles’ heel. The goal is to reach a predictive un-
derstanding of transcriptional regulation that makes it possible to calculate gene expression levels
from DNA regulatory sequence. This review focuses on the canonical simple repression motif
to ask how well the models that have been used to characterize it actually work. We consider a
hierarchy of increasingly sophisticated experiments in which the minimal parameter set learned at
one level is applied to make quantitative predictions at the next.We show that these careful quan-
titative dissections provide a template for a predictive understanding of the many more complex
regulatory arrangements found across all domains of life.
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Hic rhodus, hic salta.
—Aesop’s Fables

1. INTRODUCTION
The study of transcriptional regulation is one of the centerpieces of modern biology. It was set in
motion by the revolutionary work of Jacob and Monod in the postwar era, which culminated in
their elucidating the concept of transcriptional regulation in the early 1960s (42, 65, 66), and it
has continued apace ever since. Based on their study of the lac operon and regulation of the life
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Figure 1
The distribution of regulatory architectures in Escherichia coli. (a) Several of the simplest regulatory architectures are shown, featuring
activator and repressor binding sites. We adopt the notation (m, n) to characterize these architectures, where the first number m tells us
how many activator binding sites there are for our gene of interest, and the second number n tells us how many repressor binding sites
are controlling that same gene.Within this notation, a (0, 0) architecture is unregulated, a (1, 0) architecture is a simple activation motif,
and a (0, 1) architecture is a simple repression motif and is the central focus of the present article. (b) Relative probability of different
classes of regulatory architecture for those genes that have been annotated in E. coli (30, 89). For transcription factors that can act as
both activators and repressors, we consider their specific mode of action in the context of each regulatory architecture. For example, if a
transcription factor binds to a single site near a promoter and acts as an activator, we consider it to fall within the (1, 0) nomenclature
even if this same protein can act as a repressor on other regulatory units.

cycle of bacterial viruses, Jacob andMonod hypothesized that transcription was controlled using a
mechanism sometimes known as the repressor-operator model, in which repressive factors bind to
promoters at sites called operators to prevent activation of genes.Here, we refer to this regulatory
architecture as the simple repression motif.

Jacob and Monod suspected that there would be a universal mechanism for transcriptional
regulation that followed the strictures of the repressor-operator model; indeed, simple repression,
defined diagrammatically in Figure 1a, has since been shown to have widespread applicability,
as seen in Figure 1b. However, transcriptional reality is—as is usually the case in biology—far
more complicated (13), and, as Figure 1 reveals, many genes are in fact subject to both negative
and positive regulation. Ironically, the genetic circuit used by Monod to formulate the repressor-
operator model—the lac operon shown in Figure 2—is itself subject to positive regulation, which
shows the repressor-operator model to be incomplete (27, 117).

The lac operon is one of the canonical case studies learned by high school and college students
alike when they are first introduced to the logic of gene regulation in modern molecular and
cellular biology (2, 68). Figure 2 shows in cartoon form how the gene that encodes the enzyme
for digesting lactose is activated only when lactose is present and glucose is absent. This textbook
case of transcriptional regulation has been studied to death, but how well do we really understand
it? The sketch in Figure 2 is a broad-brush view of transcriptional control at the lac operon,
but it gives us no sense of how the level of gene expression is affected by, for example, changing
the copy numbers of the LacI and CRP transcription factors, changing the positioning of the
operator, or titrating the relative concentrations of glucose and lactose. We argue that achieving
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Figure 2
The high school lac operon. The classic story of how bacteria utilize lactose rather than glucose as a carbon
source is the canonical example used to teach the concept of genetic regulation. The figure shows that only
when lactose is present and glucose is absent will the gene for the enzyme used to digest lactose be turned
on. The activator is shown in green, the repressor is shown in red, and RNA polymerase is depicted in blue.

real understanding of this system requires that we be capable of making precise and quantitative
predictions about its regulatory response as a function of all these parameters, and then that we
be able to confirm these predictions experimentally.

How could we achieve this mastery? First, we would need theoretical models able to pro-
vide quantitative predictions that can be tested with careful experiments. Importantly, both the
predictions and the experiments themselves would need to access the same underlying knobs to
control the level of gene expression. Second, we would need to start with the simplest of regula-
tory architectures. If we are unable to understand the most basic regulatory kernel, then we have
no hope of doing so for more complex regulatory circuits. Third, to dissect more subtle features
of a regulatory circuit—for instance, to understand how expression noise depends on changing
parameters—we must be able to use quantitative information gleaned from one type of exper-
iment to formulate further predictions that are tested in subsequent experiments of a different
type. Therefore, we would need to conduct all these experiments in the same system and under
standardized conditions.

This review summarizes such an approach, which we have taken in our own laboratory over
the past decade. We discuss how, working with a set of specifically designed synthetic constructs
and challenging theoretical models with experiments, we have been able to tackle increasingly
subtle behaviors of the simple repression architecture in Escherichia coli. The strategy that we have
taken results in a pyramidal structure, as shown in Figure 3, in which parameters inferred at one
level are used to make quantitative predictions about gene expression behavior in successive,more
sophisticated experiments.

At the foundation of the simple repression pyramid are experiments to determine how gene
expression responds to changes in operator strength and repressor copy number. With this in-
formation in hand, we can then consider the entire distribution of expression levels among a
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Figure 3
The simple repression pyramid. A progression of different experiments makes it possible to assess
increasingly subtle regulatory effects for the simple repression motif. Parameters inferred from lower levels
in the pyramid are used in the analysis of the experiments at the next level. The repressor (and its binding
site) is shown in red, RNA polymerase (and its binding site) is shown in blue, and inducer is shown in green.

population of cells, as opposed to simply the average expression. At the next level in the hier-
archy, we address a number of subtle and beautiful effects that arise when there is more than one
copy of our gene of interest or competing binding sites for the repressor elsewhere on the genome
(or on plasmids). This repressor titration effect provides a very stringent test of our understanding
of the simple repression motif. Of course, much of gene expression is dictated by the presence of
environmental signals, and the next level in the simple repression pyramid is to ensure that these
same kinds of predictive models can describe induction of transcription. Furthermore, changes in
the environment such as media quality or growth temperature certainly have an effect on the bac-
terial doubling rate. The next challenge is then to retain predictive power by describing how these
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different conditions affect the magnitude of parameters that are the basis of these models, such as
repressor copy number and binding energy. Finally, evolution of transcription acts at the level of
both transcription factor binding sites and the transcription factors that bind to them. Ultimately,
the simple repression pyramid will be topped off by learning the rules that relate transcriptional
regulation to fitness (7, 35, 54, 60). At every level in the pyramid, we demand that the parameters
be self-consistent. That is, regardless of how our experiments are done or which new question we
ask, the same minimal parameter set is used without recourse to new fits for each new experiment.

Note that this article is not a review of a field; rather, it is a review of a concept, in which one
minimal parameter set is asked to describe all measurements on a particular realization of the sim-
ple repression motif. This objective is not served by an approach in which different measurements
are taken from disparate sources on different strains under different conditions.We focus instead
on measurements made using the same strains under the same growth conditions throughout, and
this renders the discussion highly self-referential. But everything that we have done was enabled
by beautiful work that has come before and inspired by wonderful experiments since; we point the
reader toward as much of this literature as possible.

The goal of this review is to address whether, for simple repression, we have reached a self-
consistent theoretical picture that stands up to careful experimental scrutiny. After an overview
of regulatory architectures in E. coli, and the simple repression motif in particular, we describe
our systematic effort to make the strains, tune the relevant knobs, and make the high-precision
measurements that enable us to test theoretical predictions about how the simple repression ar-
chitecture behaves. In the following sections, we then address the key critiques of the theoretical
framework, before stepping back to discuss what our results entail for future efforts in understand-
ing gene regulation. We argue that we have achieved significant success using this hierarchical
approach and that it provides hope for understanding other, more complex, gene regulatory cir-
cuits. Indeed, the great work done by others in lac (52, 90, 110), MarA (3, 62), GalR (96, 97, 105),
Lambda (23, 24, 79, 116), and AraC (93) lends itself to providing the fundamental stepping stones
for building other transcriptional pyramids.

2. THE REGULATORY LANDSCAPE IN ESCHERICHIA COLI AND THE
UBIQUITOUS SIMPLE REPRESSION ARCHITECTURE
Despite the dominance of E. coli as a model system for studying gene regulation, we remarkably
have little or no idea how most of its genes are controlled. As Figure 4 demonstrates, for the
majority of genes, we do not know the identity of the transcription factors that turn them on/off,
where the binding motifs for those transcription factors are, or what the regulatory logic is (at
the most basic level, whether they are controlled by repressors, activators, or a combination of
both). Figure 1 provides an incomplete, but state-of-the-art picture of our current knowledge
of the regulatory landscape by showing the distribution of different architecture types in E. coli.
Shortly after the elucidation of the repressor-operator model [the (0, 1) motif] that introduced
the simple repression architecture that we focus on here, the idea of activation as a regulatory
mechanism also took root. But as we see in Figure 1b, at the time of this writing, most genes
in E. coli are annotated as unregulated. This sounds counterintuitive, but for many genes it likely
reflects ignorance of the binding motifs and regulators, as opposed to actual lack of any regulation.
Simple repression (along with simple activation) comes in as the next most prevalent architecture,
and we now turn our attention there.

Simple repression is a common regulatory motif in E. coli (89), but we know little of the
general principles by which it is used. To tackle this, we used annotated regulatory information
from RegulonDB (30) to survey 156 promoters with a simple repression architecture, controlled
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Figure 4
Regulatory ignorance in Escherichia coli. The central figure, which schematizes the E. coli genome, shows the fraction of the operons for
which we know nothing about how they are regulated. The left panels show examples of the knowledge of regulatory architectures
required to unleash the kind of theory–experiment dialogue described here. The right panel shows the more common situation, which
is complete regulatory ignorance.

by 50 different transcription factors. We first wanted to know how the concentrations of these
regulators change under different growth conditions, and how this relates to their probability of
binding to the promoters in question.

To characterize each promoter, we used published data that quantified protein abundance
across the bacterial proteome under various growth conditions using either ribosomal profiling
or mass spectrometry (58, 95). Figure 5a shows the distribution of repressor and activator copy
numbers genome wide, while Figure 5b shows the copy numbers for just those repressors that
target the (0, 1) architectures in which we are interested. The transcription factors vary in copy
number from 0 to about 10,000 per cell. Of the repressors, just over half of them bind 10 or fewer
binding sites, while some target over 100 binding sites across the genome (Figure 5e). Given the
wide range in repressor copy number, we wondered whether it related to the number of target
binding sites that exist for each of these repressors in the genome. Indeed, when we calculated
the ratio between protein copy number and number of target binding sites for each transcrip-
tion factor (as indicated by the dashed lines in Figure 5b), we found a median ratio of about 15
transcription factor copies per binding site. The majority of the transcription factors (about 80%)
have no more than 100 copies per binding site. Given that the number of transcription factors per
binding site is on the order of 10–100, we can infer that their typical effective binding constants
(defined in detail below) are in the 10–100 nM range, since 1 copy of a protein per bacterial cell
corresponds to a concentration of roughly 1 nM.

We next asked how these simple repression promoters are regulated by the transcriptional
repressors that control them. It might be the case that the promoters respond to changes in
repressor copy number; alternatively, the copy number may remain constant, but a repressor
may be induced by an external signal to switch to an active state. Using mass spectrometry
measurements of protein copy number across 22 growth conditions (varying carbon source,
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Figure 5
Summary of transcription factors that target the (0, 1) simple repression architecture. (a) Transcription factor copy numbers in
Escherichia coli (58). The cumulative distribution of transcription factor copy numbers indicates that activator copy numbers are
generally lower than repressor copy numbers. Roughly half of the activators have copy number less than 10, while roughly half of all
repressors have copy number less than 100. Several representative examples of well known transcription factors are shown for
reference. (b) Cumulative distributions are shown for transcription factors that target the (0, 1) simple repression architecture. Data are
shown from measurements using ribosomal profiling [41 of the 50 identified repressors were measured in MOPS minimal media with
0.2% glucose (58)] and mass spectrometry [31 of the 50 identified repressors were measured in M9 minimal media with 0.5% glucose
(95)]. (c) The variability in cumulative distribution is shown for the 31 transcription factors regulating the (0, 1) architecture measured
across 22 different growth conditions, using mass spectrometry. The shaded region represents the 95th percentile region in cumulative
distributions across growth conditions, with the distributions for four growth conditions shown explicitly. (d) Coefficient of variation
for copy numbers of transcription factors regulating the (0, 1) architecture across the 22 different growth conditions, measured by mass
spectrometry. Several examples are identified along with LacI, and the complete list is summarized in Table 1. (e) Number of target
binding sites for each of the transcription factors that target a (0, 1) architecture [using annotated information from RegulonDB (30)].
( f ) Mechanisms of target binding modulation for transcription factors that target a (0, 1) architecture. Ligand-dependent transcription
factors contain a known or predicted protein domain for binding by a ligand [using information from EcoCyc (47)].

minimal versus rich media, temperature, pH, growth phase, osmotic shock, and growth in
chemostats), Schmidt et al. (95) had found that most repressor copy numbers vary less dramat-
ically as a function of growth condition when compared to the changes in copy numbers across
the entire proteome (Figure 5c). Figure 5d gives a quantitative picture of the variability in tran-
scription factor copy number for the repressors that target simple repression architectures. Most
repressors exhibit a low coefficient of variation (standard deviation/mean copy number) in their
abundance across these growth conditions (median coefficient of variation of 0.33, compared with
0.51 across the entire proteome). In Figure 6, we replot these data to show how the total proteome
changes as a function of growth rate, as compared to how the total number of transcription factors
or copies of LacI do. This plot provides a more nuanced picture of the challenges that theoretical
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Figure 6
Protein census in Escherichia coli as a function of growth rate. The figure shows the cellular copy number for all proteins, for only
transcription factors, and for LacI. The low copy number observed for LacI exemplifies the low protein counts that are commonly
observed for such regulatory proteins. Each growth rate represents a different growth condition that was considered in the work of
Schmidt et al. (95).

models must face in treating expression levels over all growth conditions, as will be discussed in
the final section of the review.

While it is possible that the growth conditions considered were not appropriate to elicit major
changes in the copy number of each repressor, an alternative explanation of the low variability in
repressor copy number is that these transcription factors, instead of relying on the modulation
of their copy number, depend on ligand binding and allosteric transitions to alter their potency
in regulating transcription. Ligand binding followed by conformational changes between inactive
and active conformations provide allosteric control of the repressors by altering their DNA bind-
ing strength, allowing for immediate changes in gene expression without relying on the much
slower process of changing the transcription factor copy number through protein synthesis or
degradation. As shown in Figure 5f, we indeed find that the majority of these repressors (65%)
are either known to bind DNA in response to binding to a ligand or, for those less well charac-
terized, predicted to have a ligand binding domain. In addition, several of the other repressors
that were identified are part of two-component systems that bind DNA in a phosphorylation-
dependent manner.

3. SIMPLE REPRESSION AS THE HYDROGEN ATOM OF GENE
REGULATION: HIC RHODUS, HIC SALTA
In physics, when we establish some model system that shows our complete command of an area,
it is often christened “the hydrogen atom” of that subject. This badge of honor refers to the far-
reaching power of the hydrogen atom in the context of the modern quantum theory of matter.
The theory informs not only the classic analysis of spectral lines in hydrogen, but also many more
nuanced behaviors ranging from the Stark and Zeeman effects to some of the most subtle ef-
fects seen in quantum electrodynamics (83). Using the tools of quantum mechanics, the hydrogen
atom is simple enough to explore—both mathematically and experimentally—revealing the basic
principles behind many of the most important ideas in modern physics. It can also teach us what
a solution to the problem looks like, in a way that is instructive when going on to tackle more
complicated problems such as the behavior of heavier atoms.

We argue that this analogy is helpful in thinking about the simple repression motif as a foun-
dation for launching into the study of more complicated regulatory architectures. One of Aesop’s
fables recounts the exploits of a braggart who after a trip to the island of Rhodes claimed to have
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RNA
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DNA
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Lac
repressor

Inducer

Figure 7
Deconstructing the lac operon to make the simple repression hydrogen atom. Key features of the wild-type
lac operon such as DNA looping between any of its three operators (only two operators shown here) are
removed from the architecture to turn it into a model (0, 1) architecture.

made a long jump that could not be equaled by others. A witness to the braggart’s commentary
replied, “Hic rhodus, hic salta,” meaning, “Here is your Rhodes, jump now.” The simple repression
motif is our Rhodes. Here, we take the leap to see the extent to which we can construct predictive
theoretical models for how this regulatory circuit behaves.

The simple repression motif that forms the basis of our work was originally constructed by
Oehler and colleagues (70, 71). In a set of now classic experiments, they pared down the complex
lac operon and rewired it as a powerful model system, stripped of all but its most essential features.
As shown in Figure 7, Oehler et al. reduced the number of repressor binding sites (operators)
from three to one, creating precisely the repressor-operator model originally envisaged by Jacob
and Monod. This remaining binding site was placed so as to compete directly with RNA poly-
merase for promoter binding. Oehler et al. furthermore recognized the key control parameters
for the simple repression motif—the repressor copy number and the operator binding strength—
and figured out how to manipulate them over different values in parameter space, as shown in
Figure 8. Using the DNA sequence of the binding site as a way to manipulate its affinity, they
could then tune the strength of repression, providing a well-conceived model system for test-
ing the theoretical predictions of various modeling frameworks aimed at describing transcrip-
tional regulation. We now consider the kinds of theoretical predictions needed to carry out the
experiment–theory dialogue advocated here.
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Figure 8
Classic experiments reveal key regulatory knobs of the simple repression motif. Oehler et al. deleted the
auxiliary binding sites in the lac operon, rendering it into a simple repression architecture (70, 71). Different
operators were used as the repressor binding site, and several different repressor counts were tuned, resulting
in different values of the repression, defined as the ratio of gene expression with no repressors present to the
level of expression with repressors present. Changes to operator sequence with respect to the O1 operator
are highlighted in blue.

4. MATHEMATICIZING TRANSCRIPTIONAL REGULATION
While some may say that Figure 2 makes predictions as to when gene expression will be turned
“on” or “off,” we protest this loose use of the term “prediction,” which in our minds has a very
special meaning.To earn the title of “the hydrogen atom of X,” the systemmust be understood not
only qualitatively, but with quantitative precision as well. In this article, “prediction” is used with
care to emphasize the quantitative concreteness of our thinking.Our aim in the coming sections is
to examine the myriad of different physical/mathematical approaches that have been set forth to
think about gene regulation in a predictive fashion.Figure 9 shows the different classes of models
that will be entertained in the remainder of the article as a result of their prevalence in the literature
and their impact on the field itself.Figure 9a provides a schematic of how thermodynamic models
are used to compute promoter occupancy, an approach that will be described in greater detail
below. Figure 9b focuses instead on mRNA dynamics using differential equations to account for
the mean number of mRNAs as a function of time given the microscopic processes that lead to
both an increase and a decrease in the number of mRNAs. An even more ambitious strategy is
presented in Figure 9c, which focuses on the dynamics of the full distribution p(m, t ), which is
defined as the probability of finding m mRNAs at time t in a single E. coli cell. To be concrete,
our strategy is to focus on the use of each of these different methods in the specific case of simple
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Figure 9
Summary of approaches to computing the level of expression from the simple unregulated promoter. These
same approaches can be used for computing the response of more complex regulatory architectures such as
the simple repression motif that is the central preoccupation of this article. (a) Thermodynamic models
compute the probability of promoter occupancy using the Boltzmann distribution. The graph shows the
probability of promoter occupancy for a weak (lacP1) and a strong (T7 A1) promoter sequence as a function
of the number of polymerases. (b) Dynamics of mean expression using kinetic models. The graph shows the
number of mRNA molecules as a function of time, with the steady-state number shown as a dashed black
line. The mRNA dynamics corresponding to two different initial conditions are shown. (c) Dynamics of
mRNA distribution using the chemical master equation approach. The bar graph shows how the distribution
of mRNA copy numbers changes over time, ultimately settling on a steady-state Poisson distribution.
Panel a is adapted from Reference 9. In panels b and c, r = 10 mRNA min−1 and γ = 1min−1.
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repression, with special focus on what the different classes of models say and how experiments
have been used to test those predictions.

4.1. The Occupancy Hypothesis and Thermodynamic Models
The thermodynamic models presented schematically in Figure 9a implicitly assume one of the
most important and ubiquitous assumptions in all of regulatory biology, namely, the occupancy
hypothesis. This hypothesis, which will be described, criticized, and contrasted with experiments
in detail in Supplemental Appendix S1, informs approaches ranging from the bioinformatic
search for transcription factor binding sites, to the use of ChIP-Seq experiments, to the kinds of
thermodynamic models that are our focus here. Stated simply, the central assumption is that the
rate of mRNA production is proportional to the probability of RNA polymerase occupancy at
the promoter,

dm
dt

= rpbound − γm, 1.

where we introduce the notation pbound for the probability that RNA polymerase is bound to the
promoter of interest and the mRNA degradation rate γ . More generally, if we have N transcrip-
tionally active states (e.g., polymerase by itself, polymerase and activator together), then we write

dm
dt

=
N∑

i=1

ri pi − γm. 2.

The idea behind this equation is that the net average rate of transcription is given by the fraction
of time the promoter spends in each transcriptionally active state, pi, multiplied by the rate of
transcription corresponding to that state, ri.

But before we can use this result, we need to know the physical nature of the individual states
and how to compute their probabilities. We adopt notation in which the probability of the ith
transcriptionally active state can be thought of as

pi = pi([TF1], [TF2], . . .), 3.

where the notation indicates that this probability is a function that reflects the occupancy of the
regulatory DNA by the various transcription factors (i.e., regulatory proteins) that interact with
the regulatory apparatus of the gene of interest. Hence, each transcriptionally active state, de-
noted by the label “i,” corresponds to a different state of the promoter characterized by a different
constellation of bound transcription factors. These ideas were first put into play in the gene reg-
ulatory setting by Ackers and coworkers and have since been explored more deeply by a number
of groups (1, 8, 9, 15, 37, 102, 103, 107, 108, 110). For the case of the simple repression motif, the
thermodynamic model is illustrated in Figure 10.

As in Figure 9a, the idea is to identify the relevant microscopic states of the promoter and to
assign to each such state its corresponding statistical weight. The details of how to use statistical
mechanics to compute this probability have been described elsewhere (9, 76), so here we resort to
simply quoting the central result of the thermodynamic models for the simple repression motif,
namely, the probability of finding RNA polymerase bound to the promoter given by

pbound =
P

NNS
e−β#εP

1 + P
NNS

e−β#εP + R
NNS

e−β#εR
, 4.
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Figure 10
States and weights for the simple repression motif. (a) Our regulatory system is assumed to consist of P RNA
polymerases (blue) and R repressors (red) per cell that either bind nonspecifically to the genomic background
DNA (our reference energy state) or compete for binding to our promoter of interest. The genomic
background is discretized by assuming a number of potential binding sites,NNS, that is given by the length
of the genome (NNS = 4.6 × 106 for Escherichia coli). (b) The different regulatory states of our simple
repression promoter. The statistical weight associated with each state is shown using the statistical
mechanical and thermodynamic formulations. The binding energies of the R repressors and P RNA
polymerase to their binding sites on the promoter are given by #εR and #εP , respectively. These energies
are given relative to the energy of nonspecific binding to the genomic background. In the thermodynamic
formulation, [P] and [R] are the cellular concentrations of the RNA polymerase and repressor, respectively.
Their dissociation constants are given by KP and KR.NNS represents the number of nonspecific binding sites
for both RNA polymerase and repressor.

where R is the number of repressors, NNS is the size of the genome (i.e., number of nonspecific
sites), and #εR is the binding energy of repressor to its operator. Similarly, P is the number of
RNA polymerase molecules, and #εP is its binding energy to the promoter.

In the language of these models, we can now relate the experimentally measurable repression,
which is obtained by quantifying the rate ofmRNAproduction, or the steady-state levels ofmRNA
or protein, in the presence and absence of repressor, to the theoretically calculable quantity pbound
such that

repression = dm/dt (R = 0)
dm/dt (R ̸= 0)

= rpbound(R = 0)
rpbound(R ̸= 0)

= pbound(R = 0)
pbound(R ̸= 0)

. 5.
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Alternatively, we can write the fold-change as

fold-change = pbound(R ̸= 0)
pbound(R = 0)

, 6.

where we have made use of the occupancy hypothesis introduced in Equation 1. We now use the
expression for pbound from Equation 4 and obtain

fold-change =
1 + P

NNS
e−β#εP

1 + P
NNS

e−β#εP + R
NNS

e−β#εR
. 7.

Finally, we assume that binding of RNA polymerase to the promoter is weak such that
P/NNSe−β#εP ≪ 1. In the context of this weak promoter approximation,which is discussed in detail
in References 9 and 31, the fold-change reduces to

fold-change = 1
1 + R

NNS
e−β#εR

. 8.

The conceptual backdrop to this result is shown inFigure 10. As we will describe in great detail
later in this article and in Supplemental Appendix S2, there ismuch confusion about themapping
between statistical mechanics language, which we believe is more microscopically transparent, and
thermodynamic language using dissociation constants. In that language, our result for fold-change
can be written as

fold-change = 1
1 + [R]

KR

, 9.

where [R] is the concentration of repressor andKR its dissociation constant to operator DNA.This
equation for the fold-change is precisely what is plotted as a theory prediction in the left panel of
Figure 11a.

4.2. Beyond the Mean: Kinetic Treatments of Transcription
Up to this point, we have examined the simple repression architecture in a manner that describes
the steady-state mean level of expression. But this is not to say that mRNA dynamics or themRNA
distribution are not of interest; quite the opposite. Knowledge of the higher moments of the dis-
tribution provides great insight into the kinetics of the system, and we turn to this now.

We begin by considering a dynamic description of repression that can be used to calculate the
temporal evolution of the number of mRNA molecules, as shown for the case of the constitutive
promoter in Figure 9b. Specifically, we think of simple repression using the kinetic scheme pre-
sented in Figure 12. For the kinetics of the first state, in which the promoter is occupied by the
repressor molecule, the linear reaction scheme shows that there is only one way to enter and exit
this state, and that is through the “empty” state (state 2). This results in the dynamical equation

dp(1)
dt

= k(R)on p(2) − k(R)off p(1). 10.

The dynamics of the empty state (state 2) are more complicated because this state is accessible to
both the repressor and the polymerase, meaning that the dynamics can be written as

dp(2)
dt

= −k(R)on p(2) + k(R)off p(1) − k(P)on p(2) + k(P)off p(3) + rp(3). 11.
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Figure 11
Theory–experiment dialogue in simple repression. (a) Three examples of predictions about the simple-repression motif that can be
subjected to experimental scrutiny using precision measurements. The left figure shows the fold-change in gene expression as a
function of repressor copy number for different operators, the middle panel shows predictions of induction profiles for different
numbers of repressors, and the right panel shows how gene expression noise (Fano factor = variance/mean) varies as a function of the
mean gene expression level for different promoter strengths. Shaded regions indicate credible parameter confidence ranges. (b) Bulk
and single-cell measurements of both repressor copy number and gene expression. For copy number, bulk measurements can be done
using immunoblotting, while counting statistics can be used at the single-cell level. To measure gene expression, bulk enzymatic assays
have excellent dynamic range. Single-cell measurements can be done by examining the level of either mRNA or protein gene product.
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Figure 12
Kinetic model of simple repression. The promoter can be empty, occupied by repressor, or occupied by RNA
polymerase. Transitions between the different states are characterized by rate constants associated with each
kinetic arrow. Note that when transcription commences from state 3, the promoter returns to the empty
state (state 2).

Note that the final term in this equation reflects the fact that mRNA is produced at rate r from
state 3, and once mRNA production begins, polymerase leaves the promoter and hence the system
goes back to state 2. The state with polymerase occupying the promoter evolves similarly, as can
be seen by writing

dp(3)
dt

= k(P)on p(2) − k(P)off p(3) − rp(3). 12.

To close the loop and come full circle to the real question of interest, namely, the production of
mRNA itself, we have

dm
dt

= rp(3) − γm. 13.

What this equation tells us is that the promoter is only transcriptionally active in the third state,
namely, that state in which the polymerase binds the promoter. The above equations can be
solved in order to obtain the temporal dynamics of mRNA concentration, as we have illustrated in
Figure 9b for the unregulated one-state promoter.

An interesting feature of the kinetic description of simple repression presented here is that
it enables us to go beyond the steady-state and equilibrium assumptions that were invoked to
calculate the fold-change in gene expression in Equations 8 and 9. Instead, we can use the kinetic
scheme shown in Figure 12 to solve for the fold-change, but now only invoking steady-state by
setting the left side in each equation above to zero.We begin by solving for the steady-state level
of mRNA,mss, and find

mss = rp(3)
γ

. 14.

But what is p(3)? In seeking the unknown steady-state probabilities, wemust respect the constraint
that the probabilities sum to one, namely,

p(1) + p(2) + p(3) = 1. 15.

We will not go into the details of the algebra of resolving these three linear equations, as these
details are described in Reference 76. Instead, we will simply quote the result as

p(3) = 1

1 + (k(P)off +r)

k(P)on

(
1 + k(R)on

k(R)off

) , 16.
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which enables us to make contact with the types of experiments discussed earlier, by computing
the fold-change:

fold-change = mss(R ̸= 0)
mss(R = 0)

= 1

1 +
(k(P)off +r)

k(P)on

1+
(k(P)off +r)

k(P)on

k(R)on
k(R)off

. 17.

Note that we can write k(R)on = k(R)+ R, where we have acknowledged that the on rate for the repressor
is proportional to the number of repressors present in the cell. Interestingly,we see that this implies
that the functional form of the fold-change is the same even in this steady-state context as it was in
the thermodynamic model framework, though now at the price of having to introduce an effective
K eff
d , resulting in

fold-change = 1(
1 + R

Keff
d

) . 18.

By comparing Equations 9 and 18, we see that their scaling with repressor number is identical.
To further explore the common features between these two expressions for fold-change, note that
we can write

K eff
d =

k(R)off

k(P)on

(
1 + (k(P)off +r)

k(P)on

)

(k(P)off +r)

k(P)on

. 19.

We can simplify this further by noting that we can write K (R)
d = k(R)off /k

(R)
+ , resulting in

K eff
d = K (R)

d

(
1 + (k(P)off +r)

k(P)on

)

(k(P)off +r)

k(P)on

. 20.

This equation reveals that the thermodynamic and kinetic treatments of simple repression have
some interesting differences and clearly shows the consequences of imposing the equilibrium
assumption in the thermodynamic calculation. The validity of this assumption will be explored
in detail in Supplemental Appendix S3.

An alternative way of viewing these same problems is by going beyond the description of the
dynamics of the mean mRNA number and appealing to the kinetic theory of transcription in
order to work out the time evolution of the probabilities of the different states (33, 46, 49, 64, 74,
82, 92, 101). Our goal is to write equations that describe the time evolution of the probability of
findingmmRNAmolecules at time t. This means that we need to define three coupled differential
equations for the mRNA distribution in each of the three states, namely, p1(m, t ), p2(m, t ), and
p3(m, t ). Intuitively, if we are thinking about the possible changes that can alter state 1, there are
only three transitions that can occur: (a) the promoter can switch from state 1 to state 2, (b) the
promoter can switch from state 2 to state 1, and (c) an mRNA molecule can decay, resulting in a
change in m. These transitions are expressed using the master equation formalism and the rate
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constants defined in Figure 12 as

dp1(m, t )
dt

= − k(R)off p1(m, t )︸ ︷︷ ︸
(1)→(2)

+ k(R)on p2(m, t )︸ ︷︷ ︸
(2)→(1)

+ γ (m+ 1)p1(m+ 1, t )
︸ ︷︷ ︸

m+1→m

− γmp1(m, t )︸ ︷︷ ︸
m→m−1

. 21.

The case of state 2 includes the same transitions between state 1 and state 2, as well as the tran-
sitions between states 2 and 3 as a result of polymerase unbinding or promoter escape due to
transcriptional initiation. Incorporating these ideas leads to an equation of the form

dp2(m, t )
dt

= k(R)off p1(m, t )︸ ︷︷ ︸
(1)→(2)

− k(R)on p2(m, t )︸ ︷︷ ︸
(2)→(1)

+ k(P)off p3(m, t )︸ ︷︷ ︸
(3)→(2)

− k(P)on p2(m, t )︸ ︷︷ ︸
(2)→(3)

+ rp3(m− 1, t )
︸ ︷︷ ︸

m−1→m
(3)→(2)

22.

+ γ (m+ 1)p2(m+ 1, t )
︸ ︷︷ ︸

m+1→m

− γmp2(m, t )︸ ︷︷ ︸
m→m−1

.

Finally, for state 3, we must account for the transitions between state 2 and state 3 and the mRNA
production at a rate r. Bringing all of these transitions together results in

dp3(m, t )
dt

=− k(P)off p3(m, t )︸ ︷︷ ︸
(3)→(2)

+ k(P)on p2(m, t )︸ ︷︷ ︸
(2)→(3)

− rp3(m, t )︸ ︷︷ ︸
m→m+1
(3)→(2)

+ γ (m+ 1)p3(m+ 1, t )
︸ ︷︷ ︸

m+1→m

− γmp3(m, t )︸ ︷︷ ︸
m→m−1

. 23.

This set of coupled equations describes the time evolution of the probability distribution p(m, t ).
As described in the following sections, the equations written above imply a steady-state mRNA

distribution that can be used to compute both the mean and variance in gene expression. In order
to render the different theoretical descriptions self-consistent, the thermodynamic parameters
such as the repressor binding energy #εR must constrain the values that the repressor rates k(R)off
and k(R)on can take. Now that we have seen how theory can be used to sharpen our thinking, we turn
to how experiments can be designed to test those theoretical ideas.

5. “SPECTROSCOPY” FOR THE SIMPLE REPRESSION HYDROGEN
ATOM: PRECISION MEASUREMENTS ON GENE EXPRESSION
Figure 11 provides a picture of how theory and experiment come together in thinking about
the simple repression motif. As Figure 11b shows, there are a variety of approaches that can be
taken to count the repressors and to measure the level of gene expression. Expression levels can be
quantified using enzymatic or fluorescence assays. Note that by choosing to measure the ratio of
level of gene expression (i.e., the fold-change) rather than the absolute value of the gene expression
itself, the system is further simplified since various categories of context dependence such as the
position of the gene on the genome are normalized away. This is not to say that the description
of such effects on the absolute level of expression is uninteresting, but rather that the focus on a
predictive understanding of the fold-change in gene expression reflects the spirit of little steps for
little feet that are required to progressively develop a rigorous view of these problems.

There are many facets to the regulatory response of the simple repression motif that can be
subjected to experimental scrutiny in order to compare them to the results of theoretical predic-
tions, as shown in Figure 11a. Indeed, the seeds of this review were planted by many wonderful
earlier works that explored various aspects of the theoretical and experimental strategies laid out
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in Figure 11. Experimentally, as noted above, Müller-Hill and Oehler led the way in the lac sys-
tem (see Figure 8), as did Schleif in the context of the arabinose operon (25, 72, 94). On the
theory side, Ackers and Shea laid the groundwork for thermodynamic models, which allow us to
predict the mean level of expression (1, 102). These models were pushed even further by Buchler,
Gerland, and Hwa (15) and by Vilar, Saiz, and Leibler (91, 107, 108). Besides the thermodynamic
model approach (8, 9, 37, 103), others have been interested in gene expression noise, which de-
mands kinetic models. These approaches to transcription have offered numerous insights of their
own (46, 49, 64, 74, 82, 92). Much of the work presented here draws inspiration from modern
quantitative dissections of the wild-type lac operon (52, 100), as well as from efforts that made it
possible to measure gene regulatory functions at the single-cell level (39, 86) and from research
that embodies the same interplay between theory and experiment featured in this article but in
the context of other gene-regulatory architectures (4, 18, 99, 115).

6. CLIMBING THE SIMPLE REPRESSION PYRAMID: A MINIMAL
PARAMETER SET TO RULE THEM ALL
In the previous sections, we outlined how different kinds of theoretical frameworks enable us to
formalize our “pathetic thinking” in order to to refine our prejudices about how a complex system
behaves (40). One of the key requirements we insist on in using such theoretical frameworks to
describe simple repression is that a single set of parameters applies across all different situations,
as illustrated in Figure 11. There is a long tradition of developing phenomenological theories
that describe broad classes of behaviors, in which the underlying microscopic processes that give
rise to material response are captured in the form of a small set of phenomenological, but measur-
able, parameters. Consider the steel used to build our bridges and skyscrapers, or the aluminum
used to build our airplane wings: Several elastic constants, a yield stress, and a fracture tough-
ness often suffice to fully characterize the material response under a broad array of geometries
and loading conditions (44). Importantly, each time we go out and use those materials for some-
thing new, we do not have to introduce a new set of parameters. It is critical to realize that, for
a phenomenological theory to be both beautiful and far-reaching in its predictive value, there is
no requirement whatsoever for an underlying “mechanistic theory” of what determines those pa-
rameters. Although perhaps the “microscopic mechanism” of, for example, how the interactions
between the nucleotides on the DNA and residues on the repressor dictate binding energy is at-
tractive to some investigators, we do not need a microscopic understanding of these atomic-level
“mechanisms” to construct a predictive theory of gene regulation. Indeed, though much progress
has been made in constructing a microscopic basis for these parameters, we generally cannot pre-
dict these material parameters from first principles.

Here, we adopt a phenomenological mind-set in the context of the gene regulatory response.
Although it is clear that there are a huge variety of complicated processes taking place within the
cell that we do not understand, we address whether it is nonetheless possible to introduce a few
key effective parameters that will allow us to characterize the regulatory response of the simple
repression motif under a broad array of different circumstances. Figure 13a shows us how the
theoretical ideas highlighted in the previous sections demand a small number of parameters before
we can use them predictively. For example, in the simple repression motif, we require a binding
energy #εR (or equivalently a KR) to characterize the strength of repressor binding to operator.
Similarly, when describing the induction response of transcription factors to inducer, we require
parameters KA and KI that describe the affinity of inducer to the transcription factor when it is in
its active and inactive states, respectively (80). We also require a free energy difference #εAI that
characterizes the relative stability of the active and inactive states in the absence of inducer. Finally,
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Figure 13
Determination of the minimal parameter set for describing simple repression across a broad array of experimental approaches and
simple repression regulatory scenarios. (a) Parameters that are introduced in the description of simple repression fold-change
measurements, in induction experiments, and in the context of gene expression noise. (b) Experiments used to determine the minimal
parameter set. The left panel is adapted from Reference 31, the middle panels are adapted from Reference 80, and the right panel is
adapted from Reference 43.
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when describing gene expression dynamics, we require rate constants for mRNA degradation (γ ),
transcript initiation (r), and the on and off rates of repressor and RNA polymerase binding to
their respective sites [k(R)on and k(R)off for the repressor, and k(P)on and k(P)off for RNA polymerase]. The
question we ask is: Once we have established this minimal set of parameters, how well can we now
quantitatively predict expression outcomes across different classes of experiments involving the
simple repression motif?

We now show how it is possible to ascend the simple repression pyramid introduced in
Figure 3. In Figure 13b, we outline how we fully determined a single minimal set of parameters
needed to characterize a host of regulatory responses. Note that others have also made complete
parameter determinations, but did so across different experiments (110). The left-hand panel of
Figure 13b illustrates how experiments like those of Oehler et al., with one particular repres-
sor copy number and a specific operator sequence, can be used to determine the parameter #εR
(or KR). The second experiment highlighted in Figure 13b shows how the transcription factor
titration effect can be used to determine the parameter #εAI (or alternatively L = e−β#εAI ), which
characterizes the equilibrium between the inactive and active states of repressor in the absence
of inducer. The third panel in the figure shows how a single induction response curve can fix the
parameters KA and KI that determine the binding of inducer to the repressor in the active and
inactive states, respectively. Finally, the right-hand panel demonstrates how, by going beyond the
mean and looking at the full mRNA distributions for the constitutive promoter and the simple
repression motif, it is possible to infer the rates of RNA polymerase and Lac repressor binding
and unbinding, as well as the rates of mRNA production and degradation.

This kinetic approach takes advantage of the known closed form of the full mRNA distribution
for a two-state promoter (74).Using this expression for the distribution,we can perform a Bayesian
parameter inference to obtain values for the polymerase rates k(P)on and k(P)off , as well as for the mRNA
production rate r, that fit the single molecule mRNA count data from Reference 43. The kinetic
rates for the repressor are obtained by assuming that k(R)on is diffusion limited (43) and demanding
that k(R)off be consistent with the binding energies obtained in the left-hand panel of Figure 13b.
We note, however, that this model differs from the one presented in Figure 12 in the sense that
upon initiation of transcription at a rate r, the system does not transition from state 3 to state 2.
Further comparison between this model and the model presented in Figure 12 is still needed and
will be explored in future work (M. Razo-Mejia and R. Phillips, manuscript in preparation).

With our single minimal parameter set in hand, it is now time to take the leap and to see
whether the theoretical framework that has been used to describe various facets of the simple
repression architecture actually works. Figure 14 shows the diversity of predictions and corre-
sponding measurements that partner with the predictions given at the top of Figure 11. In fact,
the understanding summarized in this figure was developed sequentially rather than with the “all
at once” appearance conjured up by Figure 13. Indeed, that is the principal reason that the discus-
sion is so self-referential, since over the last decade, inspired by the many successes of others (52,
67, 70, 90, 108, 110), we undertook a systematic effort to design experiments that allowed us to
control the various knobs of transcription already highlighted, to construct the strains that make
this possible, and then to do the highest-precision measurements we could in order to test these
predictions.

Figure 14a shows a modern and predictive incarnation of the experiments done by Oehler
et al. to determine the response of the simple repression motif to changes in repressor numbers
and operator sequence (we showcased their results above in Figure 8). In this set of experiments,
our ambition was to control both the copy number of repressors and operator binding strengths
and to systematically measure the resultant expression over the entire suite of different constructs,
using only one repressor copy number for eachDNA binding strength to determine the parameter
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Figure 14
Experiment–theory dialogue in simple repression. All curves are parameter-free predictions based upon the
minimal parameter set introduced in Figure 13. (a) Fold-change for simple repression as a function of
repressor copy number and operator strength for a single gene copy (12, 31). (b) Fold-change for simple
repression as a function of repressor copy number and operator strength with repressor titration effect (12).
(c) Induction of the simple repression motif for different numbers of copies of the repressor (80).
(d) Measurement of gene expression noise for simple repression motif as reported by the Fano factor
(variance/mean) (43).
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#εR as described above. The measurements were taken in multiple ways: We used both enzymatic
and fluorescent reporters to read out the level of gene expression, and we separately counted the
number of repressors using quantitative immunoblotting and fluorescence measurements. One of
our central interests is in whether or not different experimental approaches to ostensibly iden-
tical measurements yield the same outcomes. We were encouraged, at least in this case, to find
reasonable concordance between them.

The level of expression from our simple repression promoter can be significantly affected if
the repressors are enticed away from it by other binding sites. The results of this much more
demanding set of predictions surrounding the transcription factor titration effect (12) are shown
in Figure 14b. There are a number of ways to titrate away repressors: We can put extra copies of
our gene of interest on the chromosome or on plasmids (shown in the schematic below the data)
or use plasmids to simply introduce decoy binding sites for the repressor that have no explicit
regulatory role other than pulling it out of circulation, effectively tuning the chemical potential of
the repressor.Note that in this case, the fold-change has a particularly rich behavior, and this is on
a log-log plot, where functional forms often appear as straight lines. Figure 15a brings together
all of the data from Figure 14a,b under one simple conceptual roof by determining the natural
scaling variable of the simple repression motif. This data collapse implies that any combination
of repressor concentration, binding site strength, and number and strength of competing binding
sites can be replaced by an equivalent effective promoter consisting of one binding site and an
effective repressor number.

The middle panel of Figure 11a highlights the next level in the hierarchy of theoretical pre-
dictions that can be made about the simple repression motif, namely, how this motif responds to
inducer. In Figure 14c, we show one example [from a much larger set of predictions (80)] of how
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Figure 15
Data collapse of all data from the simple repression architecture. (a) Gene expression in the simple
repression motif is dictated by an effective repressor copy number (112). (b) Level of induction depends upon
inducer concentration, repressor copy number, and repressor binding strength, all of which fold into the free
energy difference between active and inactive forms of the repressor (80).
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the induction response can be predicted for different operator strengths and repressor copy num-
bers. Here we highlight predictions for the O2 operator ranging over the same repressor copy
numbers already shown in Figure 14a. As with our ability to introduce the natural variables of
the problem in Figure 15a, induction responses also have a scaling form that permits us to col-
lapse all data onto a single curve (Figure 15b). Once again, the emergence of this natural scaling
variable tells us that any set of repressor number, binding energies, and inducer concentrations can
be mapped onto a simple repression architecture with a corresponding effective binding energy.

The final part of our comparison of theory and experiment in the context of the simple re-
pression motif is shown in Figure 14d . The predictions about gene expression noise were already
highlighted in the right panel of Figure 11a. Here what we see is that the Fano factor (i.e., the
variance normalized by the mean) is quite different for constitutive promoters and promoters
subject to repression in the simple repression motif (43). Discrepancies in the gene expression
noise revealed for different regulatory architectures remain to be resolved (104).

The hierarchical analysis presented inFigure 14 illustrates the unity of outlook and parameters
afforded by performing all experiments in the same strains. When experimental consistency is
placed front and center, one minimal set of parameters appears to serve as a predictive foundation
for thinking about a broad variety of different constructs and conditions over a host of different
experimental scenarios and methods.

Nearly fifty years ago, Theodosius Dobzhansky wrote a beautiful article in American Biology
Teacher entitled “Nothing in Biology Makes Sense Except in the Light of Evolution” (22). This
phrase, now an oft-quoted tenet of modern biology, has resulted in evolution becoming the cap-
stone to numerous biological pyramids. As such, there is a reason we talk about climbing the simple
repression pyramid rather than saying that we have climbed it. Although the evolutionary aspects
of transcription are represented by the smallest part of the pyramid in Figure 3, they are perhaps
the most daunting. At the time of writing, many different groups are still working to construct
this section of the pyramid for simple repression (20, 21, 77, 78, 81, 106).

To make meaningful predictions about the evolutionary potential of the simple repression mo-
tif, it is a requirement that we have a thorough knowledge of the minimal parameter set described
in the preceding section. For example, we have shown that the sequence of the operator strongly
influences the maximum level of gene expression, given an input such as the concentration of in-
ducer. One could extend this conclusion to make predictions of how the various properties of the
induction profiles could change due to mutation. It is reasonable to assume that mutations in the
DNA binding pocket would alter only the strength of DNA binding and leave the inducer binding
constants the same as the wild type. Conversely, mutations in the inducer binding domain would
alter only the inducer binding constants. With quantitative knowledge of the single mutants, the
theoretical underpinnings allow us to assume a naïve hypothesis in which the two mutations are
additive, resulting in a predictable change in the induction profile. Measurements of this flavor
have been performed and published (19); however, without knowledge of the parameters, the pre-
dictive power is extremely limited.

7. A CRITICAL ANALYSIS OF THEORIES OF TRANSCRIPTION
Thus far, we have painted a rosy picture of the dialogue between theory and experiment in the
study of transcription in the simple repression motif. It is now time to critique these approaches
and see what such critiques imply about future efforts to dissect the regulatory genome. In the
sections that follow, we have amassed a series of worthy critiques of the program laid out thus far
in the review, and in each case, we set ourselves the task of sizing up these critiques to see what we
can learn from them. Our strategy is to discuss the high points of the analysis in the main body of
the text and to relegate the technical details behind that analysis to the appendices.
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Figure 16
The occupancy hypothesis and the equilibrium assumption. (a) The multiple steps between RNA
polymerase binding and the termination of an mRNA raise the question of whether the binding probability
(occupancy) of RNA polymerase to the promoter can be used as a proxy for the quantity of mRNA
produced, and whether RNA polymerase binding is in quasi-equilibrium such that the tools of statistical
mechanics can be used to compute this quantity. (b) The equilibrium assumption is fulfilled if the rates of
RNA polymerase binding and unbinding [k(P)on and k(P)off , respectively] are much faster than the rate of
transcriptional initiation r (see Supplemental Appendix S3 for details on this simulation).

7.1. The Equilibrium Assumption in Thermodynamic Models
As already seen in Figure 9, there are multiple approaches to modeling transcription. One broad
class of models sometimes goes under the heading of “thermodynamic models,” but we would
rather refer to them as models founded upon the occupancy hypothesis. We can examine two critical
questions about such models, shown diagrammatically in Figure 16a: (a) To what extent is it true
that the rate of transcription is proportional to the probability of promoter occupancy, and (b) can
promoter occupancy be fruitfully computed using the quasi-equilibrium assumption?

Recall that the assumption that the rate of transcription is proportional to the probability of
RNA polymerase binding to the promoter is central to the thermodynamic models. Indeed, this
assumptionmakes it possible to connect a theoretically accessible quantity, pbound, to an experimen-
tally measurable quantity, dm/dt. This connection can be used to test the predictions stemming
from these models. To answer the question of whether the rate of transcription is proportional
to pbound, we must remember that, as shown in Figure 16a, there is a plethora of kinetic steps
between the binding of RNA polymerase and transcription factors to the DNA and the ultimate
production of an mRNA molecule. Furthermore, steps such as “initiation” in the figure are an
oversimplification, as the process leading to promoter clearance and the initiation of productive
transcription is composed of multiple intermediate steps (82). In Supplemental Appendix S1, we
explore the conditions under which this occupancy hypothesis is fulfilled. In particular, we con-
sider a situation where the transition rates between intermediate steps correspond to zero-order
reactions. To illustrate this, we refer to the first transition in Figure 16a, which shows that the
fraction of RNA polymerase molecules initiating transcription, denoted by I, is related to pbound.
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In a zero-order reaction scheme, the temporal evolution of I is given by

dI
dt

= ri pbound, 24.

where ri is the rate of transcriptional initiation. In this scenario, the rate of change in the fraction
of molecules initiating transcription is proportional to the fraction of molecules bound to the
promoter. As described in Supplemental Appendix S1, under this assumption, Equation 1 can
be used to relate the probability of finding RNA polymerase bound to the promoter to the rate of
mRNA production.

Putting the occupancy hypothesis to a direct and stringent test requires us to have the ability
to simultaneously measure RNA polymerase promoter occupancy and output transcriptional ac-
tivity. The development of new approaches to directly measure DNA-binding protein occupancy
in the vicinity of a promoter and relate this binding to output transcriptional activity will make it
possible to realize such a test in the near future (17, 26, 41, 113). While technology catches up to
the demands of our theoretical models, an indirect strategy for testing the occupancy hypothesis
is to simply ask how well the thermodynamic models do for the various predictions highlighted
throughout the review. Figure 14 suggests that, for the lac operon, the occupancy hypothesis
is valid. However, it is important to note that there are cases where this hypothesis has been
explicitly called into question both in the lac operon (32, 41) and in other regulatory contexts (56,
63). As a result, the validity of the occupancy hypothesis should be critically examined on a
system-by-system basis.

The second key assumption to be considered is the extent to which the system can be viewed
as being in “equilibrium,” such that the tools of statistical mechanics can be applied to calculate
pbound and the fold-change. This equilibrium assumption permeates the vast majority of the work
presented here. In Supplemental Appendix S3, we dissect it in the context of the kinetic rates
revealed inFigure 13b. As we showed inFigure 16b, in order for equilibrium to be a valid assump-
tion when calculating pbound for the constitutive promoter, the rates of RNA polymerase binding
and unbinding [k(P)on and k(P)off , respectively] need to be much larger than the rate of initiation r.
However, we find that the inferred rates do not justify the use of the equilibrium assumption: The
rate of RNA polymerase unbinding from the promoter is not much faster than the subsequent
rate of initiation, such that the system does not get to cycle through its various binding states and
equilibrate before a transcript is produced.However, our calculations reveal that, given these same
rates, the fold-change in gene expression can be calculated based on the equilibrium assumption.
As discussed in detail in Supplemental Appendix S3, if k(P)on ≪ k(P)off + r, then when the system
transitions to the polymerase-bound state, it will quickly revert back to the unbound state either
by unbinding or through transcription initiation. As a result of this separation of time scales, the
repressor gets to explore the bound and unbound states such that its binding is equilibrated even
if the RNA polymerase binding is not.

Finally, it is important to note that our conclusions about the applicability of equilibrium rely
on committing to the kinetic scheme presented in Figure 12 and on the inferred parameters
shown in Figure 13b. Changes to the molecular picture of the processes underlying repression
and gene expression could significantly affect our conclusions. Indeed, researchers have cast doubt
on the applicability of equilibrium to describe the lac operon (41) as well as other gene-regulatory
systems (28, 57).

7.2. Reconciling Thermodynamic Models and Statistical Mechanical Models
Thermodynamic models of transcription can be formulated either directly in the language of
statistical mechanics, by invoking binding energies and explicitly acknowledging the various
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microscopic states available to the system, or in the language of thermodynamics, in which DNA–
protein interactions are characterized using dissociation constants. The literature is not always
clear about the relation between these two perspectives, and our central argument (fleshed out
in detail in Supplemental Appendix S2) is that they are equivalent. That argument was really
already made in Figure 10, in which we saw that the statistical weights of the three states of the
simple repression motif can be written in either of these languages.

We personally favor the statistical mechanical language because we find that, in going to new
regulatory architectures, it is more microscopically transparent to enumerate the microscopic
states and their corresponding energies than to invoke dissociation constants that combine these
microscopic interactions into an effective parameter, as shown in the next section for the case of
the nonspecific background. One related point of possible confusion concerns the use of param-
eters such as NNS in the statistical mechanical approach to occupancy models of transcriptional
regulation. In Supplemental Appendix S2, we demonstrate that the dissociation constant Kd is
given by

Kd = NNS

Vcell
eβ#ε. 25.

This equivalence shows that the parameter NNS, which reflects the genome size and hence the
size of the nonspecific background binding landscape, is in fact just a contribution to the standard
state concentration used in conjunction with the dissociation constant Kd in disguise.

7.3. The Energy of Nonspecific Binding
One of the key simplifying assumptions often invoked in the context of thermodynamic models of
transcription is the treatment of the binding of transcription factors to the nonspecific background
as though all such nonspecific sites are equivalent. For transcription factors such as LacI, there
is wide-ranging evidence from diverse types of experiments (e.g., measurements of the protein
content of genome-free minicells and imaging using modern microscopy techniques) that these
transcription factors are almost always bound to the genome rather than free in cytoplasm (34,
45, 88). As such, when computing the probability of promoter occupancy by either polymerase or
repressors, we need to account for the distribution of these molecules across the remainder of the
genome.

With an approximately 5 × 106 bp genome as in E. coli, it at first blush seems ridiculous to
proceed as though 5 × 106 − 1 of those sites have the exact same energy, εNS. To explore the dis-
tribution of nonspecific energies, one idea is to slide an energy matrix,much like those determined
through Sort-Seq (6, 11, 48, 53), across the entire genome, base pair by base pair, to get the full
distribution. Such a distribution is shown in Figure 17, where the energy matrix for the LacI re-
pressor was applied to the entire E. coli genome. Energy values for each genomic site have been
plotted relative to the binding energy #εR of LacI to its O1 wild-type operator, which has been
measured to be −15.3 kBT (31). We see immediately that an exceedingly small number of sites
have a negative binding energy, meaning more preferable binding than the vast majority of sites,
which are found to be positive.The three native lac operators, shown as black, red, and green verti-
cal lines, have highly negative binding energies compared to the rest of the sites.With knowledge
of the distribution, it is tempting to use this directly in the thermodynamic calculations to possibly
get a better treatment of the nonspecific background. However, for now, it is a luxury to have an
accurate energy matrix that reports the binding energy of a given transcription factor to a DNA
binding site in vivo. We certainly do not know the binding energy matrix for all transcription
factors that would permit the determination of the distribution of nonspecific binding energies.
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Figure 17
Distribution of nonspecific binding energies. The distribution shows the predicted binding energies for LacI
to all possible 21 bp sequences on the Escherichia coli genome (strain MG1655, GenBank: U00096.3). Binding
energies were calculated using an energy matrix obtained by Sort-Seq on the LacI simple repression
architecture (5). The energies were fixed relative to the O1 wild-type operator, with #εR = −15.3kBT .

But more interestingly, as we show in detail in Supplemental Appendix S4, there really is
no difference between using the complete distribution of binding energies and using an effective
energy of the entire genome. This concept is explored in detail in Supplemental Appendix S4
and agrees with more sophisticated treatments using concepts from statistical physics (36, 98).We
treat this problem using the three toymodels shown in Supplemental Figure S4. First,we assume
that there is a uniform binding energy distribution in which all binding sites have the same energy.
By definition, this is the simplest approach where this energy can be used directly in the partition
function. The second example is the extreme case in which there are only two nonspecific binding
energies, ε1 and ε2, which are evenly distributed about the genome. In this case, we can show the
nonspecific background behaves as though it has a single effective binding energy of the form

εNS = ε1 + ε2

2
, 26.

showing that the effective nonspecific binding energy ϵNS tells the exact same story as using the full
distribution. Finally, we take the more realistic case in which we assume a Gaussian distribution
of binding energies across the genome with mean ϵ̄ and standard deviation σ , much like what is
seen in Figure 17. Here, a few more mathematical steps outlined in the Appendix deliver us to
the effective nonspecific binding energy

εeff. = ε̄ − βσ 2

2
. 27.

Note that this shows that, even if we have a Gaussian distribution of nonspecific binding energies,
it can be treated exactly as a uniform distribution with a single effective energy.

7.4. Promoter Competition Against Nonspecific DNA-Binding Proteins
Up until this point, we have considered the effect of LacI nonspecific binding throughout the
genome on its regulatory action in the context of the simple repression motif. However, just like
in the simple repression motif, where the promoter and operator constitute the specific binding
sites for RNA polymerase and repressor, respectively, these same sequences serve as substrates for
the nonspecific binding of other DNA-binding proteins that decorate the bacterial genome. In
Supplemental Appendix S5, we show how the effect of these nonspecific competitors can be
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absorbed into an effective number of nonspecific binding sitesNNS such that the theoretical mod-
els describing the simple repression motif retain their predictive power. Interestingly, the calcu-
lations presented in the Appendix also suggest that, as the concentrations of these DNA-binding
proteins are modulated due to changes in growth rate, the effect of these competitors on the
rescaled NNS remains unaltered. This indifference to growth rate stems from the fact that, as
growth rate increases, both the overall protein concentration and the cell’s DNA content increase.
This simultaneous increase in protein and DNA concentration leads to a relatively constant num-
ber of proteins per DNA target in the cell irrespective of growth conditions.

7.5. Is Gene Expression in Steady State?
A critical assumption in our experimental measurements of gene expression is that gene expression
is in steady state. Steady state has different definitions depending on the method of measurement.
FormRNAFISH, for example,we assume that themRNAs are produced at rate r that matches the
rate of degradation γmss, where mss is the steady-state level of mRNA.When measuring protein
expression, we assume that the protein accrued over the cell cycle is negated by the dilution of
these proteins into the daughter cells upon division, as is shown in Figure 18a. Through this

ΔI
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Figure 18
Test of the idea of steady-state gene expression for cells in exponential phase. (a) Diagrammatic view of protein dilution through cell
division. As cells grow, the expression of fluorescent proteins marches on. As the cell approaches division, the total detected fluorescence
is much larger than detected at the cells’ birth. On average, the proteins are split evenly among the daughter cells, resulting in a
fluorescence level comparable to that of the original mother cell. (b) Schematic of experimental measurement. To test the steady-state
hypothesis, we monitored the growth of several bacterial microcolonies originating from single cells and tracked the difference in
intensity with respect to their mother cell as a function of time for each daughter cell through the family tree. (c) Fluorescence intensity
difference between mother/daughter pairs as a function of time. Red points indicate individual daughter/mother pairings in a given
lineage. Blue triangles represent the average difference at that time point. Error bars on blue points are the standard error of the mean
(SEM). A kernel density estimation of the #I distribution is shown on the right-hand side of the plot. The black dashed line is at zero.
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assumption, we are able to state that, on average, a single measurement represents the level of
expression for that particular time point rather than integrating over the entire life history of the
cell. A typical rule of thumb is that steady-state expression is reached when the cells enter the
exponential phase of growth.

We put this hypothesis to the test by directly measuring the expression level of exponential-
phase E. coli over time. Using video microscopy, we monitored the growth of cells constitutively
expressing YFP in exponential phase (OD600nm ∼0.3–0.4) in minimal medium with a doubling
time of approximately an hour (Figure 18a) following the experimental approach undertaken by
Brewster et al. (12). Starting from a single cell, we tracked the lineages as the microcolony devel-
oped and compared the fluorescence in arbitrary units of each cell to that of the founding mother
cell. If steady-state gene expression has been achieved, this approach, schematized in Figure 18b,
will result in an average difference in fluroescence #I of zero. The results of this experiment are
shown in Figure 18c. In the figure, we see that individual measurements (red points) are scattered
about zero, but that, once the mean difference in intensity is considered (blue triangles), the data
become very tightly distributed about zero (black dashed line). These results show that, when cells
are growing in exponential phase, gene expression levels are in steady state, and the reporter is not
accrued over the life history of the cell lineage.

7.6. Allosteric Models Versus Hill Functions
Although many thermodynamic models of gene regulation attempt to enumerate the entire set of
microscopic states and assign each their appropriate statistical weight, it is also extremely popular
to adopt a strictly phenomenological model of binding described by Hill functions. It is undeni-
able that the Hill function features prominently in the analysis of many biological processes (for
interesting examples, see 21, 84, 85, 100). However, treating allosteric systems with Hill functions
often abstracts away the important physical meaning of the parameters and replaces them with
combinations of polynomials often referred to as “lumped parameters.” For example, one could
treat the induction profiles of LacI discussed above in this work using a Hill equation of the form

fold-change = leakiness + dynamic range

(
c
Kd

)n

1 +
(

c
Kd

)n , 28.

where the leakiness is set as the zero point of expression. With increasing concentration c of lig-
and, the leakiness is modified by an expression describing the activity of the repressor using a Hill
function. In this expression, c corresponds to the concentration of inducer; n is the Hill coeffi-
cient, which describes the cooperativity of repression; and Kd is an effective dissociation constant
(52).

Note that nowhere in this expression is any treatment of the allosteric nature of the protein!
While structural biology has demonstrated that this repressor can exist in active and inactive states,
each of which has its own dissociation constant for the inducer, all of these details have been
lumped into the Kd parameter. Figure 19a shows Equation 28 applied to an induction profile of
the lac simple repression motif with an O2 operator and 260 repressors per cell. Unsurprisingly,
this equation can fit the data very nicely when all of the coefficients are properly determined. In
fact, this fit is nearly indistinguishable from that obtained through a Monod-Wyman-Changeux
(MWC)model–inspired approach (80), as is shown in Figure 19b.However,fitting aHill function
results in a single curve. In the Hill framework, for each induction profile, we must fit Equation 28
once again for all parameters. As the parameters for an allosteric model have a direct connection
to the biological properties of the repressor molecule, we can use the parameter values determined
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Figure 19
Predictive versatility of the Hill function versus allosteric models. (a) Measurements of the fold-change of a
simple repression architecture as a function of IPTG concentration. Points and error bars represent the
mean and standard error of ten biological replicates of repression of the O2 operator with 260 repressors per
cell. The solid line is the best fit of the standard Hill function given in Equation 28. (b) Best-fit line for the
data using the Monod-Wyman-Changeux (MWC) model of allostery coupled with the thermodynamic
model is in red. Gray lines represent predicted induction profiles of other combinations of repressor copy
numbers and DNA binding energies. These predictions are made using only the parameters fit from a single
strain. Tests of these predictions were shown in Figure 14c.

from one experimental circumstance to predict a wide swath of other induction profiles. Examples
of such curves are shown as gray profiles in Figure 19b.

What distinguishes allosteric models such as MWC and Koshland-Nemethy-Filmer [KNF
(50)] from Hill functions is that they make a tangible connection with what structural biology has
taught us about the conformational states of proteins. The existence of inactive and active states
implies that activity curves will be a very special ratio of polynomials.While an individual fit may
be comparable in quality to that obtained by a Hill function, the loss of this physical context
results in a fit that has no predictive ability. The MWC and KNF models, however, open the
door to a huge suite of predictions not only about experiments like those described in this review,
but also for biochemical experiments at the level of single molecules. For example, the allosteric
treatment of induction hints at how mutating the repressor directly would change the behavior of
the system. It is easy to hypothesize that mutations in the DNA binding domain would alter the
binding energy of the repressor to the DNA#εR, whereas mutations in the inducer domain would
alter the KA and KI (Figure 13a). If we were to redo the analysis by fitting phenomenological
Hill equations, we would be left in the dark as to how to predict the effect of either of these
perturbations.

7.7. Two-State Versus Three-State Dynamics
Most of the theoretical work on mRNA distribution dynamics has focused on the two-state model
for a regulated promoter in which the promoter is treated as though it has two available states,
inactive and active (74, 92, 104). Indeed, the predictions from Reference 43 shown in Figure 14d
were calculated using this model.However, another critical question to be examined in the context
of theoretical models of transcriptional noise is the relative merits of the two-state and three-
state models (for the three-state model, see Figure 12). Note that within this framework, the
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unregulated promoter itself becomes an effective two-state model, since we now acknowledge
both the empty promoter and the promoter occupied by RNA polymerase. In this case, the mRNA
distribution can be fitted with the parameters k(P)on , k

(P)
off , r, and γ while still accounting for the

variability in promoter copy number across the cell cycle, and this is the strategy used in the
parameter determination described in Figure 13b.

We have found that it is possible to fit the full mRNA distribution using either the two-state
or three-state models, as already described in Reference 43.However, to get a fully self-consistent
parameter set in which themean fold-changes as described in both the thermodynamic and kinetic
pictures are identical, it is necessary to resort to the three-state model that explicitly accounts for
repressor and polymerase binding. Specifically, we demand that the repressor kinetic parameters
k(R)on and k(R)off be consistent with the repressor copy number R and the repressor–DNA binding en-
ergy#εR.The parameters reported in Figure 13bwere determined using these constraints, giving
identical results for the mean fold-change under both languages and, not surprisingly, requiring
the full three-state model for this self-consistent picture to emerge.

8. SIMPLE REPRESSION IN OTHER CONTEXTS
Thus far, we have focused on one realization of the simple repression architecture. But in fact,
the way that cells use the simple regulatory architecture is much more diverse, as illustrated in
Figure 20. Variants of this architecture provide alternative means for the cell to perform sig-
nal transduction. Like LacI, many repressors are inducible, whereby binding of a small-molecule
signaling ligand reduces their ability to bind DNA. The identities of these ligands are generally
related to the physiological role provided by the operon under control. For example, while LacI
binds allolactose and is involved in lactose utilization, GalR binds galactose, and this in turn pro-
vides control over galactose usage (69, 96).Among those repressors that bind to a simple repression
architecture, MprA has been reported to bind antimicrobial agents such as 4-dinitrophenol and
carbonyl cyanide m-chlorophenylhydrazone (CCCP) and negatively regulate the expression of
multidrug resistance pumps (14). A related but opposite logic is also commonly observed, referred
to as corepression, where binding of a small-molecule ligand instead will enhance the binding
of the repressor to DNA. For example, TrpR binds tryptophan and provides repression of the
tryptophan biosynthesis pathway, as well as repressing its own expression (114).

In both induction and corepression, signaling is achieved by a ligand internal to the cell. An-
other approach is to instead monitor the external environment directly, which is the role provided
by two-component signal transduction systems (55). Here, the signal detection is typically carried
out by a transmembrane protein, a sensor histidine kinase, which then activates a transcription
regulator by phosphorylation. Such sensors that activate repressors involved in simple repression
architectures include PhoR, ArcB, and CpxA, which regulate the DNA binding activity of PhoB,
ArcA, and CpxR, respectively. The repressor PhoB is involved in regulating phosphorus uptake
and metabolism, while ArcA primarily acts as a repressor under anaerobic conditions (61, 111).
CpxR appears to act on at least 100 genes, in response to cell envelope stress, but also plays roles
associated with motility, biofilm development, and multidrug resistance (87).

Cells have also devised ways to rapidly respond to stimuli by actively degrading regulatory
proteins under specific stimuli. The DNA damage, or SOS, response provides one such example,
which is mediated by the repressor LexA (59).Under conditions of DNA damage,LexA undergoes
a self-cleavage reaction that is further catalyzed by the protein RecA, and this provides derepres-
sion of about 40 genes (38). Toxin–antitoxin systems such as RelB–RelE serve as another example
of this. While the toxin RelE is metabolically stable, with a cellular concentration dependent on
the cell division time, the antitoxin RelB is actively degraded by the protease Lon and this can
lead to a much shorter half-life (16, 73).
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ADDITIONAL MODES OF REGULATION IN (0,1) TRANSCRIPTIONAL REGULATORY ARCHITECTURES

Induction by ligands

MprA-2,4-dinitrophenol
CysB-O-acetyl-L-serine
FadR-acyl-CoA
Cra-fructose-1,6-bisphosphate
NsrR-nitric oxide
AcrR-ethidium
PaaX-phenylacetyl-CoA

Active degradation of regulatory proteins

PhoB ArcA CpxR

Sensing by two-component signaling

Co-repression by ligands

PurR-hypoxanthine
TrpR-tryptophan
AllR-glyoxylate
BirA-biotinyl-5'-adenylate
IscR-[2Fe-2S] 

LexA
λ cI
RelB

Ph
oR

Ar
cB

Cp
xA

HPO4
2– Quinones Envelope

stress

Figure 20
Simple repression in other contexts. Here we summarize several different modes of regulation that are observed at (0, 1) architectures.
Like LacI, many transcription factors are inducible, and binding by a specific ligand leads to a loss of repression. Conversely, a number
of transcription factors undergo corepression and bind the DNA more strongly upon binding of a ligand to the repressor. For the
examples identified, the transcription factor is shown in red text, while the ligand is shown in black. Several transcription factors appear
as part of two-component signal transduction systems, whose phosphorylation-dependent DNA-binding strength is changed by the
activity of membrane-bound sensor kinases. Lastly, repression can be modulated by changing the copy number of the repressor in
response to stimuli. This can be achieved through self-cleavage (e.g., LexA) or by cellular proteases (e.g., RelB by Lon).

The examples provided here serve as a test bed for signal transduction strategies that demand
further quantitative analysis and can be considered under the experimental–theoretical framework
we have presented in this review. Table 1 gives us another way to get a sense of the diversity of
simple repression motifs in E. coli by showing us the copy numbers of the key transcription factors
involved in simple repression.

9. BEYOND SIMPLE REPRESSION: BUILDING NEW PYRAMIDS
Of course, as we already showed in Figure 1, there is far more to transcriptional regulation than
simple repression. Since the original development of the repressor-operator model by Jacob and
Monod, the regulatory mechanisms of the lac operon have been resolved in exquisite detail, as
shown diagrammatically on the left-hand side of Figure 7 (68). The picture that has emerged is
a rather complex one, in which Lac repressor monomers assemble into a dimer of dimers. These
repressors can bind to two of the three operators found in the lac operon simultaneously, resulting
in DNA looping and the stabilization of repressor action. Furthermore, the binding affinity of
repressor to the DNA is modulated by inducer, which can be actively pumped into the cell by
the Lac permease, which is one of the subjects of regulation by the repressor. This panoply of
regulatory features calls for a complex theoretical description of the lac operon, which can be
nevertheless built on the parameters already obtained by building the simple repression pyramid.
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Table 1 Summary of transcription factors identified in (0, 1) regulatory architectures

Protein
Copy number in

glucose, minimal media
Standard deviation across
22 growth conditions

Coefficient of
variation

HU 87,425 28,629 0.37
H-NS 22,541 7,181 0.24
IscR 7,687 2,603 0.49
Fur 6,492 1,707 0.29
Lrp 6,092 1,339 0.20
IHF 5,018 1,223 0.25
ArcA 3,367 1,030 0.24
CRP 2,048 646 0.24
AlaS 1,948 605 0.33
MprA 1,085 516 0.61
PepA 1,076 259 0.23
MetJ 990 231 0.31
CpxR 933 158 0.17
NsrR 872 189 1.78
PurR 826 165 0.24
FNR 609 236 0.49
LexA 560 177 0.32
CysB 523 124 0.33
AllR 206 68 0.43
FadR 186 75 0.34
RelB 178 61 0.53
TrpR 167 35 0.22
Cra 148 87 0.37
UidR 139 137 1.06
NagC 124 36 0.26
LacI 23 8 0.65
AcrR 21 10 1.08
DicA 20 6 0.40
BirA 19 7 0.50
AscG 17 12 0.62
NadR 16 4 0.26
PaaX 11 19 0.64
PhoB 7 5 0.45

Protein copy numbers are per cell and were determined by mass spectrometry (95). The values for HU and IHF were taken
as the average of their individual subunits (HupA and HupB for HU and IhfA and IhfB for IHF).

One of the most interesting features of regulation in prokaryotes and eukaryotes alike comes
in the form of DNA looping. Such biological action at a distance is seen in the wild-type lac
operon itself, allowing us to dissect this ubiquitous regulatory mechanism quantitatively. Just as
it was possible to engineer pared-down versions of the simple repression motif, similar exercises
have been undertaken in the context of DNA looping, as shown in Figure 21a. Looping has
been explored in a wonderful series of experiments from the Müller-Hill lab (67, 70) and has also
been elegantly treated using thermodynamic models (109). These threads of research show how a
pyramid of regulatory understanding for wild-type operons can be constructed, featuring multiple
binding sites and DNA looping.
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Figure 21
Regulatory action at a distance. The same minimal parameter set remains valid in the context of DNA looping, with the only
requirement being to introduce a new parameter that captures the free energy of DNA looping. (a) Repression for the case of DNA
looping as a function of the number of repressors per cell. (b,c) Operator swap experiment. In this case, for each DNA loop length, the
operators that flank the loop were changed. (b) Using the Oid-O1 data to obtain the DNA looping free energy as a function of operator
distance, the thermodynamic model makes a parameter-free prediction of how repression will work out in this case, shown in the red
curve. (c) Inferred looping free energy is the same regardless of which operators flank the loop. Figure adapted from Reference 10.

Using the same minimal parameter set already identified in Figure 13b, it is possible to make
predictions about how the regulatory response will work in the context of DNA looping. For
example, thermodynamic models of DNA looping identify one new key parameter with respect
to those presented in Figure 13b: the DNA looping free energy (9, 109). By fitting this model
to the repression corresponding to the looping architecture shown in Figure 21a for a particular
number of repressors per cell, the model predicts the repression value as repressor copy number is
systematically varied. Similarly, it is also possible to do an operator swap experiment in which the
DNA loop itself, and hence the DNA looping free energy, is unchanged, but instead the binding
sites that the repressor uses to form the loop are varied. Figure 21b shows the outcome of such
experiments. In Figure 21c, we also show that the inferred looping free energy is indifferent to
the choice of operators used to induce the loop. The collection of results shown in Figure 21
provides further exciting evidence of the transferability of the minimal parameter set determined
in the simple repression architecture.

In our opinion, one of the most surprising aspects about the state of the art in regulatory bi-
ology is our ignorance of regulation across genomes writ large. Even in the best understood of
organisms, namelyE. coli, we have no idea howmore than half of the annotated genes are regulated,
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LexA

ybeG promoter

purT promoter

xylE promoter

CRP

CRP DgoR

XylR

ybeG purTpurR

xylE

dgoRKADT promoter dgoR

Figure 22
Beyond the lac operon in regulatory dissection. Using the Sort-Seq method, it is now possible to identify
regulatory architectures and the transcription factors that mediate them, making it possible to do regulatory
dissections like that described here (6).

as we illustrated above in Figure 4 (29, 30, 47). There we represented the circular E. coli genome
with those operons for which there is some regulatory annotation shown in blue and those thus far
featuring no such regulatory knowledge shown in red. Faced with the kind of ignorance revealed
in that figure, there is no prospect of building up a regulatory dissection like that we have reviewed
in the context of simple repression. To rectify this, we need to establish methods that will allow
us, first of all, to simply draw the cartoons of how a given gene’s regulatory apparatus is wired.
Recent work has begun to develop tools that make it possible to go from regulatory sequence to
the kind of regulatory architecture cartoons shown in Figure 1 (6, 48, 51). Figure 22 exemplifies
how a combination of mutagenesis, deep sequencing, mass spectrometry, and information theory
has made it possible to take the uncharacterized genes reported in Figure 4 and figure out their
regulatory architecture (6, 48). Each time we identify how a given regulatory architecture is con-
figured, we are then poised to construct a new pyramid based upon minimal parameter sets like
the one we describe here.

10. GENE REGULATION AND STATISTICAL PHYSICS:
TACTICAL SUCCESS BUT STRATEGIC FAILURE?
An interesting reflection offered on thework presented here is that it should be viewed as a “tactical
success but a strategic failure.”There are two aspects to this critique, and each is worth addressing.
The first is that the architectures explored here are “synthetic,” and thus anything we learn does
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not apply to the “real biology.” In response, we note that we set out more than a decade ago
to understand gene regulation in bacteria in a quantitative and predictive manner with a view
to exporting it to the entire regulatory genome not only of E. coli, but of other more complex
organisms as well. However, what we found was that, even for the most well-studied regulatory
system,we had dispiritingly little quantitative understanding of how it would behave as the various
“knobs” that control transcription were tuned. This demonstrated that we could not tackle the
complexity of real endogenous promoters with potentially quite complex regulatory architectures
without first proving to ourselves that we could understand the most basic unit already introduced
in Jacob and Monod’s repressor-operator model and denoted here as the simple repression motif.
Although we backpedaled from our original goals to do the most simple case, we think the work
showcased here demonstrates that we have laid the groundwork for a full regulatory dissection of
the E. coli genome.With the existence of methods like those highlighted in Figure 22, we are now
poised to extend these kinds of regulatory dissections to the entire genome and believe that such
work will unearth many generalizable principles (6).

The second thrust of the “tactical success but strategic failure” critique points out that, although
we were able to find a single self-consistent minimal parameter set to describe regulation of the
simple repression motif, it applies only to the particular conditions in which these specific strains
were grown; if the growth conditions are shifted, then we will need to determine the relevant
parameters all over again. This might be true, but to consider its weight we turn to an analogous
example from the long history of the physics of materials. For a cubic material such as aluminum,
we can measure the elastic constants (C11, C12, and C44) of single crystals. Now if we want to use
those elastic constants to compute what will happen to a structure such as an airplane wing, we can
confidently do so. However, if we alter the temperature of the metal away from that under which
the constants were measured, then the values of those elastic constants will change. Figuring out
how elastic constants are modified by temperature entailed a great deal of subsequent work (75).
But acknowledging that amaterial response is subtle does not at all invalidate the original theory of
linear elasticity, and for the gene regulatory situations considered here, we think it possible that a
similar scenariomight reveal itself.The first step is tomake predictions and test them to determine
whether different conditions do indeed require different parameters. The only way to actually
know what happens in complex regulatory circuits is first to master a predictive understanding of
the simplest case and subsequently build out from there.

Despite these worthy critiques, the point of this article was to show that, with sufficient care, it
is indeed possible to use a single minimal parameter set to describe a broad array of different regu-
latory situations. In our view, the results are sufficiently encouraging that it is now time to move to
new systems, such as systematic studies of the regulatory landscape of newly sequenced genomes
of microbes from the ocean floor. Having made the jump on the simple repression Rhodes, we are
excited to see what comes of efforts of the kind described here in novel microorganisms, and in
the more challenging setting of multicellular organisms as well.
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This Appendix aims to spell out in full detail some of the key technical issues that arise in the attempt
to make quantitative theoretical models of transcriptional regulation.

S1.

The theoretical models presented in this work rely on the fundamental assumption that mRNA copy
number can act as a proxy for the occupancy of the promoter by RNA polymerase. Only through this
assumption are we able to relate experimentally accessible quantities, such as mRNA copy number or
number of fluorescent proteins, to the promoter states that are considered theoretically. In this section
we explore the validity and reach of this so-called occupancy hypothesis by considering the mathematical
relationship between mRNA copy number, m, and the probability of finding RNA polymerase bound to
the promoter, pbound.

To make this analysis possible, we consider the simple model of transcription shown in Figure S1. As
seen in the figure, we model each step between polymerase binding and mRNA production as a zero-order
transition. In this context, the fraction of promoters in the process of initiating transcription, I, is given
by

dI

dt
= ripbound � reI, (S1)

where ri is the rate of initiation, and re is the rate of elongation. As elongation ensues, we will keep track
of which base pair the polymerase is located on using the fraction of polymerase molecules occupying
base pair j, which we denote by Ej . The fraction of molecules at the first base pair can be obtained by
solving

dE1

dt
= reI � reE1. (S2)

Similarly, for base pair j < N , where N is the length of the gene being transcribed, we have

dEj

dt
= reEj�1 � reEj . (S3)

Finally, the fraction of polymerase molecules at the last base pair is given by

dEN

dt
= reEN�1 � rtEN , (S4)

where rt is the rate of termination. Once an mRNA is terminated we assume that it is subject to
degradation at a rate � such that is concentration m is given by

dm

dt
= rtEN � �m. (S5)

Supplemental Material: Annu. Rev. Biophys.  2019. 48:121-163
https://doi.org/10.1146/annurev-biophys-052118-115525

https://doi.org/10.1146/annurev-biophys-052118-115525
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pbound

ri re re re... rt γ

initiation elongation termination degradation

binding

Figure S1. Simple model of mRNA production to probe the occupancy hypothesis. We assume that all steps from RNA

polymerase binding to the termination and subsequent degradation of mRNA are described by zero-order kinetics.

By solving the system of equations shown above, we can then relate the magnitude predicted by our
models, pbound, to the measurable number of mRNA molecules m.

In order to solve for m using the above equations, we will assume steady-state such that all derivatives
are zero. Further, due to the fact that every step in the process shown in Figure S1 is linear in the
concentrations of the di↵erent molecular species, we can make use of a very convenient property of the
system of equations. Specifically, we add up all equations together resulting in

0 = ripbound � �m (S6)

such that
m =

ri
�
pbound. (S7)

This provides us with the first important result. Specifically, under conditions of steady-state and as-
suming a transcriptional cascade composed of zero-order reactions, we find a simple linear relationship
between the mRNA copy number and the occupancy state of the promoter, as determined through pbound.

Under slightly di↵erent assumptions, the occupancy hypothesis can also be used to relate pbound to
the rate of mRNA production dm/dt as shown in Equation 1. First, we relax the assumption made above
that all the processes described by Equations S1 through S5 are in steady-state. Instead we posit that
only the processes up until Equation S5 reached this steady-state. To put this in other words, we will
set only the derivatives in Equations S1 through S4 to zero. If we, once again, add up the system of
equations, we arrive at

dm

dt
= ripbound � �m. (S8)

Finally, we consider that mRNA degradation is negligible. This assumption true as long as the rate of
initiation is faster than the degradation term such that ri ⌧ �m. Under this condition, we can neglect
the last term on the right-hand side of Equation S8 leading to

dm

dt
⇡ ripbound (S9)

which is Equation 1 if we identify the rate of transcriptional initiation ri with the e↵ective rate of mRNA
production r used throughout the main text.

S2. Equivalence of thermodynamic and statistical mechanical models of promoter occu-

pancy

We next consider how the the statistical mechanical formulation of expression (Bintu et al. [1])
compares with alternative thermodynamic formulations that use the language of dissociation constants
(e.g. Buchler, Gerland, and Hwa [2, 3, 4], and introduced by Shea and Ackers [5, 6]). We begin with
the statistical mechanical formulation of the simple repression architecture and calculate the probabil-
ity of RNA polymerase bound to its target promoter, pbound. We then consider how this formulation
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relates to thermodynamic formulations using dissociation constants. In doing so, we are able to show
how these dissociation constants implicitly include a factor NNS that was explicitly present in the sta-
tistical mechanical formulation and accounts for the reservoir of nonspecific binding sites on the genomic
background.

Regardless of how we arrive at our model of transcriptional regulation, these models are all founded
upon an assumption that the observed expression is proportional to the binding probability of RNA
polymerase and that an assumption of steady-state is su�ciently valid. Here we begin by outlining
the statistical mechanical formulation of the simple repression architecture [7]. We e↵ectively treat the
genome as a reservoir containing NNS nonspecific binding sites bound by RNA polymerase and a number
of di↵erent transcription factors (Figure 10(A)). Due to the high concentration of DNA in the cell it is
generally reasonable to assume that most, if not all of the transcription factors in the cell are bound to
the genomic DNA [8, 9].

Here we would like to estimate the probability that RNA polymerase is bound to our simple repression
promoter, pbound, that is present on the genome. As shown in Figure 10(B), the promoter can either be
empty, occupied by RNA polymerase, or occupied by a repressor (in this case, LacI). This probability
depends on the di↵erence in free energy associated with each particular state of the system. We will take
as a reference state that where all RNA polymerase and LacI proteins are bound nonspecifically to the
genomic background. Following this approach, the probability of bound RNA polymerase, pbound can be
found to be given by,

pbound =
P

NNS
e���"P

1 + R
NNS

e���"R + P
NNS

e���"P
, (S10)

with � = 1
kBT , where kB is the Boltzmann constant and T is the temperature of the system. Here, �"P

denotes the di↵erence in binding energy when repressor binds the promoter, relative to nonspecific binding
on the genome. �"P similarly denotes the di↵erence in binding energy when RNA polymerase binds the
DNA. R and P represent the copy number per cell of repressor and RNA polymerase, respectively. Note
that in our formulation, we have assumed that both the repressor and RNA polymerase are unable to
bind simultaneously.

Now we can consider the thermodynamic approach that was taken by Buchler, Gerland, and Hwa
[3]. In their work, the authors adopted and generalized the approach in the classic work of Shea and
Ackers [5, 6] and so we shall begin there. In that classic work, Shea and Ackers developed a statistical
mechanical model to describe the bacteriophage lambda switch, enumerating each possible configuration
of the regulatory architecture. Following their approach, we will denote �ǴP as the free energy for
binding of RNA polymerase to the promoter, and �ǴR for binding of LacI to the promoter. In their
framework, the probability that RNA polymerase is bound to the promoter, pbound, is then given by

pbound =
[P ]e���ǴP

1 + [P ]e���ǴP + [R]e���ǴR
, (S11)

where [P ] and [R] are the concentrations of unbound RNA polymerase and unbound LacI, respectively.
The free energies can be related to corresponding dissociation constants through the standard relationship,

�ǴP = kBT ln
KP

c0
, (S12)

and

�ǴR = kBT ln
KR

c0
, (S13)

although note that in each case the argument of the logarithm is normalized by a standard state concen-
tration c0, normally taken to be 1 M. HereKP is the dissociation constant for binding by RNA polymerase



4

to the promoter, and KR is the dissociation constant for binding of LacI to the promoter. These disso-
ciation constants represent the concentration when each binding site is half-maximally occupied. Using
these relationships between energy and dissociation constants in Equation S12 and Equation S13, we can
re-write pbound as,

pbound =
[P ]
KP

1 + [P ]
KP

+ [R]
KR

. (S14)

This is the thermodynamic representation that would be obtained following the approach of Buchler,
Gerland, and Hwa [3]. Here we see that the probability is still determined by considering the set of states
available to the promoter, but with the corresponding Boltzmann weight for binding by RNA polymerase
defined by [P ]/KP , and that of LacI by [R]/KR.

Comparing the statistical mechanical equation of pbound in Equation S10 with the thermodynamic
representation in Equation S14 above, we find that

KP =
NNS

Vcell
e���"P , (S15)

and

KR =
NNS

Vcell
e���"R . (S16)

Here Vcell refers to the volume of the cell and is used to translate between protein copy numbers and
concentrations. In the in vivo context considered here, the dissociation constants reflect binding by
proteins that are otherwise assumed to be bound to the nonspecific genomic background, and will generally
di↵er from what might be obtained from in vitro measurements [4]. Hence, we argue that both the
statistical mechanical and thermodynamic formulations represent equivalent descriptions. The main
distinction is that the statistical mechanical formulation is explicit in describing the nonspecific genomic
background through the term NNS and assuming one copy of the promoter.

S3. The equilibrium assumption

Having established the conditions under which we can connect the probability of finding RNA poly-
merase bound to the promoter, pbound, with the rate of mRNA production, we now ask whether it is
reasonable to use the tools of statistical mechanics to calculate pbound. While we are encouraged by the
apparent validity of the theory based on the agreement with experimental data shown throughout the
main text, here we will carefully consider the equilibrium assumption that underlies calculating pbound in
the context of our minimal parameter set (defined in Figure 13(B)). While it will be shown below that
the rates of RNA polymerase binding and unbinding are incompatible with an equilibrium assumption
for binding by RNA polymerase, we will find that under the weak-promoter approximation, there exists
a regime where it is indeed reasonable to apply a statistical mechanical treatment to calculate pbound.

First, we focus on the model of an unregulated promoter shown in Figure S2(A). Here, the promoter
can be unoccupied or occupied by RNA polymerase. The fraction of promoters in each state is denoted
by punbound and pbound, respectively. When RNA polymerase is bound it can also initiate transcription
at a rate r. Upon RNA polymerase escape from the promoter, the system is taken back to an unoccupied
state. The rate of change in the fraction of occupied promoters is given by

dpbound
dt

= k(P )
on punbound � k(P )

offpbound � r pbound (S17)

while the rate of mRNA production can be written as

dm

dt
= rpbound (S18)
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which corresponds to the rate of mRNA production as posited by the occupancy hypothesis.
We next seek to establish under what conditions we can calculate pbound using statistical mechanics.

In the equilibrium limit, pbound for this unregulated promoter can be calculated using the states and
weights defined in Figure 9(A) such that

pequilbound =
P

NNS
e���"p

1 + P
NNS

e���"p
. (S19)

In Appendix S2, we saw that this same expression can be written in the thermodynamic language as

pequilbound =
[P ]
KP

1 + [P ]
KP

, (S20)

where KP is the dissociation constant between RNA polymerase and the promoter. This expression for

pequilbound can be related to the scheme shown in Figure S2(A) by using [P ]/KP = k(P )
on /k(P )

off such that

pequilbound =
k(P )
on

k(P )
on + k(P )

off

. (S21)

In order to calculate pbound without enforcing equilibrium, we invoke steady-state in the fraction of
occupied and unoccupied promoters such that Equation S17 can be written as

0 = k(P )
on punbound � k(P )

offpbound � r pbound. (S22)

We now make use of the fact that the probabilities are normalized, pbound + punbound = 1 in order to
obtain

pbound =
k(P )
on

k(P )
on + k(P )

off + r
. (S23)

Clearly, pbound in Equation S23 is not equal to pequilbound in Equation S21. The only way to recover pequilbound
is for the rate of initiation r to be much slower that one of the other rates in the system. Namely,

we need r ⌧ k(P )
on or r ⌧ k(P )

off such that k(P )
on + k(P )

off + r ⇡ k(P )
on + k(P )

off . These di↵erent limits are
explored in Figure S2(B) through stochastic simulations that calculate the promoter state and initiation
events as a function of time. In the first three simulations within Figure S2(B), we show how, when the
conditions described above are met, the promoter cycles multiple times between its bound and unbound
state before an initiation event ensues. This back-and-forth between the bound and unbound states leads
to quasiequilibrium. That is, the fact that the transitions between the bound and unbound states are
faster than the rate of initiation allows us to invoke separation of time scales such that, at each time
point, we can use statistical mechanics to describe the equilibrium between these two states. However, if
r is larger than these transition rates, most instances of the promoter being bound lead to an initiation
event as shown in the last simulation in the Figure S2(B) and there is no longer a separation of time
scales.

Interestingly, the inferred transition rates from Figure 13(B) do not fulfill this condition as k(P )
on , k(P )

off <
r. Thus, at least a priori, equilibrium cannot be invoked to describe the transcription of an unregulated
lac promoter. However, the successes of the theory at predicting experiments suggest that, under certain
conditions, we are still allowed to invoke the quasi-equilibrium assumption for the regulated lac promoter.

We next consider the kinetic scheme for the regulated promoter, shown in Figure S3(A). The reader is
reminded that this scheme does not make any assumption about the relative strength of each transition
rate or about equilibrium. In this context, we are first interested in asking whether the probability of
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finding RNA polymerase bound to the promoter p(3) = pbound, which we solved for in Equation 16,
is equivalent to the same probability that can be calculated in the equilibrium case, pequilbound, shown in
Equation 4.

To make progress, we rewrite pequilbound in Equation 4 in the language of dissociations constants

pequilbound =
[P ]
KP

1 + [P ]
KP

+ [R]
KR

. (S24)

Invoking the identities introduced in Section 4.2 such that k(R)
on = k(R)

+ [R] and k(P )
on = k(P )

+ [P ], and the

definition of the dissociations constant for repressor and RNA polymerase given by k(R)
off/k

(R)
+ = KR and

k(P )
off/k

(P )
+ = KP , respectively, we obtain

pequilbound =

k(P )
on

k(P )
off

1 + k(P )
on

k(P )
off

+ k(R)
on

k(R)
off

. (S25)

In contrast, pbound from Equation 16, which is absent of any assumption of equilibrium, is given by

pbound =

k(P )
on

k(P )
off+r

1 + k(P )
on

k(P )
off+r

+ k(R)
on

k(R)
off

. (S26)

Again, as with the unregulated promoter, we find that the expression for pbound is not equal to p
equil
bound. One

way to alleviate this discrepancy is through the quasiequilibrium assumption noted above, requiring that

the rate of RNA polymerase unbinding is much faster than the rate of initiation, k(P )
off ⌧ r. However,

Figure 13(B) reveals that k(P )
off ⇡ r and not k(P )

off ⌧ r as demanded above for the quasiequilibrium
approximation to apply. Interestingly, at least for the case of simple repression considered here, we will
see below that the equilibrium assumption can still be invoked under certain conditions for the calculation
of the fold-change in gene expression.

In Equation 17 in the main text, we calculated the fold-change in gene expression corresponding to
the kinetic scheme presented in Figure 12 and reproduced in Figure S3(A). This calculation made no
assumption regarding equilibrium and resulted in

fold-change =
1 + k(P )

on

k(P )
off+r

1 + k(P )
on

k(P )
off+r

+ k(R)
on

k(R)
off

. (S27)

Our objective is then to determine under what limits we can reduce this fold-change to its equilibrium
counterpart obtained in Equation 7 or in the context of the weak-promoter approximation shown in
Equation 8.

As expected from our calculations on the applicability of equilibrium to derive pbound, if we assume

that k(P )
off ⌧ r, Equation S27 reduces to the fold-change in equilibrium shown in Equation 7. We already

saw that this limit is not consistent with the inferred rates. However, instead, consider the limit where

k(P )
on ⌧ k(P )

off + r. In this case, we can neglect the term k(P )
on

k(P )
off+r

in Equation S27 such that the fold-change

reduces to

fold-change ⇡ 1

1 + k(R)
on

k(R)
off

=
1

1 + [R]
KR

, (S28)



8

p
ro

m
ot

er
 s

ta
te

time (min)
0 10 20 30 40 50 60
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initiation events for the kinetic scheme introduced in Figure 12 for di↵erent parameters of the regulated promoter, for the

case where k
(P )
on ⌧ k

(P )
off + r. Here we observe many more binding and unbinding events by the repressor than by RNA

polymerase, characteristic of our statistical mechanical description. The parameters used are k
(P )
on = 0.1 min

�1
,

k
(P )
off = 1 min

�1
, k

(R)
on = 0.5 min

�1
, k

(R)
off = 0.5 min

�1
, and r = 60 min

�1
.

which corresponds to the fold-change in equilibrium under the weak-promoter approximation shown in
Equations 8 and 9. In Figure S3(B) we explore this regime using stochastic simulations. The simulation
reveals that, in this limit, the promoter mostly transitions between its repressor-occupied state and its
empty state. Only rarely will the system transition to the RNA polymerase-bound state and, on these
rare occasions, this event almost always leads to the initiation of transcription and the return of the
promoter to its empty state. As a result, there is a clear separation of time scales between the process of
repressor binding and unbinding and the subsequent steps in the transcriptional cascade. This separation
of time scales justifies the applicability of the quasiequilibrium assumptions to calculate the fold-change
in gene expression in terms of the probability of repressor binding.

As seen in Figure 13(B), our estimates for k(R)
on , k(R)

off and r suggest that we are in this regime where
the fold-change in gene expression can be calculated using the tools of statistical mechanics despite the
fact that the probability of RNA polymerase binding to the promoter cannot be obtained using such
equilibrium considerations. Thus, by considering fold-change instead of pbound directly, we are able to
ignore the potentially non-equilibrium behavior of RNA polymerase.

S4. The nonspecific genomic background

A simplifying assumption often made in thermodynamic models of transcription is the idea that the
binding of transcription factors to nonspecific sites is characterized by a single binding energy as shown in
Figure S4(A). In this case, the partition function for putting P polymerases on the nonspecific background
is

ZNS(P,NNS) =
NP

NS

P !
e��P"NS . (S29)

Of course, this is a convenient simplifying assumption that is pedagogically helpful, but raises the question
of whether it masks some important e↵ect. In fact, as we show in the remainder of this section, even when
the nonspecific background is characterized by a distribution of energies, ultimately, it can be represented
by an equation of the form Equation S29, but with the energy "NS replaced by an e↵ective energy.

To get a feeling for how the e↵ective energy arises, we begin with a toy model of the nonspecific
background as shown in Figure S4(B). In this case, the P polymerases are distributed between the
NNS/2 sites available with binding energy "1 = "̄+� and the NNS/2 sites available with binding energy
"2 = "̄ �� such that "̄ is the mean non-specific binding energy. To compute the partition function, we
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need to sum over all the ways of distributing the P polymerases over the two nonspecific reservoirs. We
imagine that the number bound on reservoir 1 is i and the number bound on reservoir 2 is P � i, and
then sum over all i ranging from i = 0 all the way to i = P , resulting in

ZNS =
PX

i=0

g1(i)g2(P � i)e��[i"1+(P�i)"2], (S30)

where g1(i) is the number of ways of distributing i polymerases over the NNS/2 sites of reservoir 1 and
g2(P � i) is the number of ways of distributing P � i polymerases over the NNS/2 sites of reservoir 2.
Because i << NNS/2, we can write g1(i) as

g1(i) ⇡
(NNS

2 )i

i!
(S31)

and similarly write g2(P � i) as

g2(P � i) ⇡
(NNS

2 )P�i

(P � i)!
. (S32)

In light of these results, we can now rewrite the partition function for nonspecific binding as

ZNS =
PX

i=0

(NNS
2 )P

i!(P � i)!
e��[i"1+(P�i)"2] (S33)

which can be rewritten as

ZNS =
(NNS

2 )P

P !
e��P"2

PX

i=0

P !

i!(P � i)!
e��i("1�"2), (S34)
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where we have multiplied the previous expression by P !/P ! = 1 in anticipation of beating our formula
into the form of a binomial. Indeed, our sum is now of the form of a binomial allowing us to use

PX

i=0

P !

i!(P � i)!
xP = (1 + x)P . (S35)

As a result, we can write our partition function in the form

ZNS =
NP

NS

P !

1

2P
(e��"2(1 + e��("1�"2)))P . (S36)

This should be compared with

ZNS =
NP

NS

P !
e��P"NS (S37)

which is the result for the partition function for the most simple model in which the nonspecific background
is assumed to be uniform.

We now want to see whether our expression given in eqn. S36 is equivalent to the single reservoir
model. By equating eqn. S36 and eqn. S37 and taking the log of both sides we have

"NS = kBT ln2 + "2 � kBT ln (1 + e��("1�"2)) (S38)

We can simplify this by noting that the term involving the logarithm can be simplified as

ln(1 + e��("1�"2)) = ln(1 + e�2��) ⇡ ln(1 + 1� 2��) ⇡ ln 2 + ln (1� ��), (S39)

where we have used the fact that "1 � "2 = 2�. Given that �� << 1 (i.e. the energy di↵erence between
the two states is small), we can use the Taylor series ln (1� x) ⇡ �x with the result that

"NS = "̄ (S40)

This result shows us that in the toy model of the nonspecific background of Figure S4(B), the two
nonspecific backgrounds are equivalent to a single reservoir with an energy given by the mean of the
energies of the two reservoirs, establishing that in this pedagogically motivated model we can use a single
energy to describe the nonspecific background. Now let’s move to the case of realistic distribution of
nonspecific energies.

Figure 17 shows the distribution of nonspecific binding energies obtained by taking the energy matrix
describing the binding of LacI and applying it to all sites across the E. coli genome (also see Figure S4(C)
for a comparison with the other models considered thus far). Other examples of the distribution of
nonspecific binding energies have been considered as well with similar outcome [2, 10]. As a result, we
can write the number of binding sites with energy between E and E + dE as

n(E) =
NNSp
2⇡�2

e�(E�"̄)2/2�2

, (S41)

where "̄ is the mean of the distribution of nonspecific binding energies and � provides a measure of the
width of that distribution.

To compute the partition function for the binding of a polymerase, for example, to this nonuni-
form genomic background, we need to sum over all the microscopic states available to the polymerase.
Symbolically, the quantity we need to evaluate is

ZNS =
X

E

n(E)e��E . (S42)
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In fact, since we are assuming a continuous distribution of energies, this really is an integral of the form

ZNS =

Z 1

1
e��E NNSp

2⇡�2
e�(E�"̄)2/2�2

dE. (S43)

This result can be rewritten as

ZNS =
NNSp
2⇡�2

e�"̄2/2�2
Z 1

1
e�

1
2�2 [E2�2E"̄+2�2�E]dE. (S44)

By completing the square, this integral results in

ZNS = NNSe
��"̄e�

2�2/2 (S45)

which should be compared with the result we would get if we assumed a homogeneous nonspecific back-
ground with only a single binding energy "NS resulting in the form

ZNS = NNSe
��"NS (S46)

By equating these two expressions, we find that we can treat the nonuniform background as though it
were a homogenous genomic background with e↵ective binding energy

"eff = "̄� ��2

2
. (S47)

The result above considered a single polymerase or repressor molecule bound to the nonuniform non-
specific background. What happens in the case where we have P polymerases bound nonspecifically?
Because each of those polymerases binds independently of the others (because the number of polymerases
is of order 103 � 104 and the genome size is greater than 106 we don’t need to worry about polymerases
interfering with each other), the total partition function for all of these polymerases bound to the non-
specific background is given by

ZNS(P,NNS) =
(
R1
1 e��E NNSp

2⇡�2
e�(E�"̄)2/2�2

dE)P

P !
=

NP
NSe

��P"eff

P !
, (S48)

where once again "eff = "̄ � ��2

2 and this result shows that if the distribution of binding energies is
Gaussian, then we can treat the nonspecific background as being equivalent to a uniform nonspecific
background with energy "eff . The point of all of this analysis was simply to examine the validity of the
convenient simplifying assumption of some thermodynamic models of treating the nonspecific background
as uniform. As shown elsewhere [2, 10], this approximation is quite reasonable.

S5. Accounting for the e↵ect of nonspecific promoter occupancy

So far our statistical mechanical treatment of the simple repression architecture has treated the RNA
polymerase and LacI proteins as isolated from the pool of other transcription factors that are also littered
across the genomic DNA. In Figure 6 we plot the abundance of DNA-binding proteins per cell across a
number of growth conditions using the proteomic study from Schmidt et al. [11]. These values include
nucleoid-associated proteins that also bind the genomic DNA. For growth in M9 minimal media with
0.5% glucose, we find that there are about 3⇥ 105 DNA-binding proteins per cell and we can use this to
make a simple estimate of genomic occupancy by these proteins. Let us assume that each transcription
factor binds the DNA as a dimer (this will vary with the transcription factor species) and occupies a DNA
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length of 15 bp (this varies from 7 bp to 38 bp in E. coli for transcription factors listed on RegulonDB;
[12]). For growth in 0.5% glucose, we find that about 2.3 Mbp or about half the genome is occupied (15
bp⇥3⇥105DNA-binding proteins⇥1/2 dimers per protein).

Given the high occupancy of DNA-binding proteins on the genomic DNA estimated above, there
might be some expectation that, in contrast to our current model of simple repression, the occupancy
of the genome by these other DNA-binding proteins cannot be ignored. Here we consider the e↵ect of
their occupancy by adding an explicit set of states to represent the case where these additional DNA-
binding proteins can occupy the roughly 60 bp promoter region of our simple repression architecture.
For simplicity we assume that these proteins only bind nonspecifically, ignoring any potential sequence-
specific e↵ects. In Figure S5(A) we show the states and weights of the simple repression promoter, where
we have included this additional set of states. We could have extended this further, either by treating each
additional DNA-binding protein species separately, or by being more careful about our specification of
these additional states. However, the point of this exercise is to see what e↵ect the pool of nonspecifically
bound DNA-proteins might have on our model. We can calculate pbound which, if we invoke the weak

promoter approximation
⇣

P
NNS

e���"P ⌧ 1
⌘
, is given by

pbound =
P

NNS
e���"P

1 + L · CNS
NNS

+ R
NNS

e���"R
. (S49)

L represents the number of ways other DNA-binding proteins may bind the promoter nonspecifically, and
for simplicity is taken as the length of the promoter region (L ⇡ 60 bp). CNS represents the copy number
of all other DNA-binding proteins bound to the genome that we noted earlier. Fold-change, which is the
ratio of pbound(R � 0) to pbound(R = 0), will then be given by

fold-change =
1 + L · CNS

NNS

P
NNS

e���"P
·

P
NNS

e���"P

1 + L · CNS
NNS

+ R
NNS

e���"R
. (S50)

Here, the RNA polymerase components P
NNS

e���"P cancel out and upon some rearrangement, we find
that

fold-change =
1

1 + R
NNS

e���"R(1 + L · CNS
NNS

)�1
. (S51)

Using CNS ⇡ 1.5 ⇥ 105, which is based on our estimate of the total DNA-binding protein copy number
found above for growth in glucose (bound as dimers), we calculate a value of L · CNS

NNS
⇡ 2. Importantly,

we find that this additional term in our fold-change equation does not depend on the key parameters of
our simple repression architecture, namely the repressor copy number or repressor binding energy, and
we can arrive back to our original form of fold-change by a defining N 0

NS = NNS ⇥ (1 + L · Cns
NNS

).
The estimates so far were based on assuming that cells grow in 0.5% glucose at a particular doubling

rate. In di↵erent media, the growth rate will change leading also to a modulation in the total number
of transcription factors: faster growing cells have a larger protein complement than their slower-growing
counterparts. However, faster growing cells also have more copies of the genome as a means to keep
up with the fast replication pace. Figure S5(B) shows that these two e↵ects cancel each other out.
Specifically, variations in the number of transcription factors as a result of changes in growth rate are
counteracted by the corresponding change in the average genome copy number per cell such that the
number of nonspecific binding proteins per base pair remains approximately constant throughout a wide
range of growth conditions. As a result, the small e↵ect of considering all nonspecifically bound tran-
scription factors remains unaltered regardless of growth rate.
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Figure S5. A crowded chromosome. (A) States and Weights for simple repression with a pool of nonspecific DNA

binding proteins. RNA polymerase (light blue), a repressor, and other nonspecific DNA binding proteins compete for

binding to a promoter. The R repressors and P RNA polymerase bind with energies �"R and �"P , respectively. In

addition, there are CNS DNA binding proteins per cell that can bind the promoter of length L ⇡ 60 bp. These proteins

bind nonspecifically and therefore only contribute an entropic term. NNS represents the number of nonspecific binding

sites on the genome. (B) Measured protein copy numbers are shown for DNA binding proteins in E. coli across 22 growth

conditions. Protein copy numbers per cell were determined by Schmidt et al. [11] with proteins identified based on their

annotation in EcoCyc. Error bars are propagated from the reported standard deviations. Protein copy numbers per

genome equivalent were calculated by estimating the total genomic content as a function of growth rate using Cooper and

Helmstetter’s model of E. coli chromosomal replication [13, 14, 15].
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F. Rinaldi, J. Collado-Vides, RegulonDB version 9.0: high-level integration of gene regulation,
coexpression, motif clustering and beyond, Nucleic Acids Res 44 (2016) D133–D143.

13. S. Cooper, C. E. Helmstetter, Chromosome replication and the division cycle of Escherichia coli
Br, J Mol Biol 31 (1968) 519–540.

14. P. P. Dennis, H. Bremer, Modulation of Chemical Composition and Other Parameters of the Cell
at Di↵erent Exponential Growth Rates, EcoSal Plus 3 (2008).

15. T. E. Kuhlman, E. C. Cox, Gene location and DNA density determine transcription factor distri-
butions in Escherichia coli , Mol Syst Biol 8 (2012) 610.


	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Biophysics
Online
	Most Downloaded Biophysics
 Reviews 
	Most Cited Biophysics
 Reviews 
	Annual Review of Biophysics
Errata 
	View Current Editorial Committee

	All Articles in the Annual Review of Biophysics, Vol. 48
	Molecular Fitness Landscapes from High-Coverage Sequence Profiling
	Split Green Fluorescent Proteins: Scope, Limitations, and Outlook
	How Good Can Single-Particle Cryo-EM Become? What Remains Before It Approaches Its Physical Limits?
	Membrane Electroporation and Electropermeabilization: Mechanisms and Models
	Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties
	Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression
	Mammalian Respiratory Complex I Through the Lens of Cryo-EM
	Single-Molecule Studies on the Protein Translocon
	Mechanisms of Sensory Discrimination: Insights from DrosophilaOlfaction
	How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization
	Helicase Mechanisms During Homologous Recombination in Saccharomyces cerevisiae
	Generalized Born Implicit Solvent Models for Biomolecules
	An NMR View of Protein Dynamics in Health and Disease
	Biophysics of Chromatin Dynamics
	Raman Imaging of Small Biomolecules
	Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications
	Programming Structured DNA Assemblies to Probe Biophysical Processes
	Understanding the Role of Lipids in Signaling Through Atomistic and Multiscale Simulations of Cell Membranes
	Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation
	Regulation of Transmembrane Signaling by Phase Separation
	RNA-Mediated Virus Assembly: Mechanisms and Consequences for Viral Evolution and Therapy
	Structure and Assembly of the Nuclear Pore Complex
	Hybrid Live Cell–Supported Membrane Interfaces for Signaling Studies


