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This Appendix aims to spell out in full detail some of the key technical issues that arise in the attempt
to make quantitative theoretical models of transcriptional regulation.

S1.

The theoretical models presented in this work rely on the fundamental assumption that mRNA copy
number can act as a proxy for the occupancy of the promoter by RNA polymerase. Only through this
assumption are we able to relate experimentally accessible quantities, such as mRNA copy number or
number of fluorescent proteins, to the promoter states that are considered theoretically. In this section
we explore the validity and reach of this so-called occupancy hypothesis by considering the mathematical
relationship between mRNA copy number, m, and the probability of finding RNA polymerase bound to
the promoter, pbound.

To make this analysis possible, we consider the simple model of transcription shown in Figure S1. As
seen in the figure, we model each step between polymerase binding and mRNA production as a zero-order
transition. In this context, the fraction of promoters in the process of initiating transcription, I, is given
by

dI

dt
= ripbound − reI, (S1)

where ri is the rate of initiation, and re is the rate of elongation. As elongation ensues, we will keep track
of which base pair the polymerase is located on using the fraction of polymerase molecules occupying
base pair j, which we denote by Ej . The fraction of molecules at the first base pair can be obtained by
solving

dE1

dt
= reI − reE1. (S2)

Similarly, for base pair j < N , where N is the length of the gene being transcribed, we have

dEj
dt

= reEj−1 − reEj . (S3)

Finally, the fraction of polymerase molecules at the last base pair is given by

dEN
dt

= reEN−1 − rtEN , (S4)

where rt is the rate of termination. Once an mRNA is terminated we assume that it is subject to
degradation at a rate γ such that is concentration m is given by

dm

dt
= rtEN − γm. (S5)
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Figure S1. Simple model of mRNA production to probe the occupancy hypothesis. We assume that all steps from RNA
polymerase binding to the termination and subsequent degradation of mRNA are described by zero-order kinetics.

By solving the system of equations shown above, we can then relate the magnitude predicted by our
models, pbound, to the measurable number of mRNA molecules m.

In order to solve for m using the above equations, we will assume steady-state such that all derivatives
are zero. Further, due to the fact that every step in the process shown in Figure S1 is linear in the
concentrations of the different molecular species, we can make use of a very convenient property of the
system of equations. Specifically, we add up all equations together resulting in

0 = ripbound − γm (S6)

such that
m =

ri
γ
pbound. (S7)

This provides us with the first important result. Specifically, under conditions of steady-state and as-
suming a transcriptional cascade composed of zero-order reactions, we find a simple linear relationship
between the mRNA copy number and the occupancy state of the promoter, as determined through pbound.

Under slightly different assumptions, the occupancy hypothesis can also be used to relate pbound to
the rate of mRNA production dm/dt as shown in Equation 1. First, we relax the assumption made above
that all the processes described by Equations S1 through S5 are in steady-state. Instead we posit that
only the processes up until Equation S5 reached this steady-state. To put this in other words, we will
set only the derivatives in Equations S1 through S4 to zero. If we, once again, add up the system of
equations, we arrive at

dm

dt
= ripbound − γm. (S8)

Finally, we consider that mRNA degradation is negligible. This assumption true as long as the rate of
initiation is faster than the degradation term such that ri � γm. Under this condition, we can neglect
the last term on the right-hand side of Equation S8 leading to

dm

dt
≈ ripbound (S9)

which is Equation 1 if we identify the rate of transcriptional initiation ri with the effective rate of mRNA
production r used throughout the main text.

S2. Equivalence of thermodynamic and statistical mechanical models of promoter occu-
pancy

We next consider how the the statistical mechanical formulation of expression (Bintu et al. [1])
compares with alternative thermodynamic formulations that use the language of dissociation constants
(e.g. Buchler, Gerland, and Hwa [2, 3, 4], and introduced by Shea and Ackers [5, 6]). We begin with
the statistical mechanical formulation of the simple repression architecture and calculate the probabil-
ity of RNA polymerase bound to its target promoter, pbound. We then consider how this formulation
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relates to thermodynamic formulations using dissociation constants. In doing so, we are able to show
how these dissociation constants implicitly include a factor NNS that was explicitly present in the sta-
tistical mechanical formulation and accounts for the reservoir of nonspecific binding sites on the genomic
background.

Regardless of how we arrive at our model of transcriptional regulation, these models are all founded
upon an assumption that the observed expression is proportional to the binding probability of RNA
polymerase and that an assumption of steady-state is sufficiently valid. Here we begin by outlining
the statistical mechanical formulation of the simple repression architecture [7]. We effectively treat the
genome as a reservoir containing NNS nonspecific binding sites bound by RNA polymerase and a number
of different transcription factors (Figure 10(A)). Due to the high concentration of DNA in the cell it is
generally reasonable to assume that most, if not all of the transcription factors in the cell are bound to
the genomic DNA [8, 9].

Here we would like to estimate the probability that RNA polymerase is bound to our simple repression
promoter, pbound, that is present on the genome. As shown in Figure 10(B), the promoter can either be
empty, occupied by RNA polymerase, or occupied by a repressor (in this case, LacI). This probability
depends on the difference in free energy associated with each particular state of the system. We will take
as a reference state that where all RNA polymerase and LacI proteins are bound nonspecifically to the
genomic background. Following this approach, the probability of bound RNA polymerase, pbound can be
found to be given by,

pbound =
P

NNS
e−β∆εP

1 + R
NNS

e−β∆εR + P
NNS

e−β∆εP
, (S10)

with β = 1
kBT

, where kB is the Boltzmann constant and T is the temperature of the system. Here, ∆εP
denotes the difference in binding energy when repressor binds the promoter, relative to nonspecific binding
on the genome. ∆εP similarly denotes the difference in binding energy when RNA polymerase binds the
DNA. R and P represent the copy number per cell of repressor and RNA polymerase, respectively. Note
that in our formulation, we have assumed that both the repressor and RNA polymerase are unable to
bind simultaneously.

Now we can consider the thermodynamic approach that was taken by Buchler, Gerland, and Hwa
[3]. In their work, the authors adopted and generalized the approach in the classic work of Shea and
Ackers [5, 6] and so we shall begin there. In that classic work, Shea and Ackers developed a statistical
mechanical model to describe the bacteriophage lambda switch, enumerating each possible configuration
of the regulatory architecture. Following their approach, we will denote ∆ǴP as the free energy for
binding of RNA polymerase to the promoter, and ∆ǴR for binding of LacI to the promoter. In their
framework, the probability that RNA polymerase is bound to the promoter, pbound, is then given by

pbound =
[P ]e−β∆ǴP

1 + [P ]e−β∆ǴP + [R]e−β∆ǴR
, (S11)

where [P ] and [R] are the concentrations of unbound RNA polymerase and unbound LacI, respectively.
The free energies can be related to corresponding dissociation constants through the standard relationship,

∆ǴP = kBT ln
KP

c0
, (S12)

and

∆ǴR = kBT ln
KR

c0
, (S13)

although note that in each case the argument of the logarithm is normalized by a standard state concen-
tration c0, normally taken to be 1 M. Here KP is the dissociation constant for binding by RNA polymerase
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to the promoter, and KR is the dissociation constant for binding of LacI to the promoter. These disso-
ciation constants represent the concentration when each binding site is half-maximally occupied. Using
these relationships between energy and dissociation constants in Equation S12 and Equation S13, we can
re-write pbound as,

pbound =

[P ]
KP

1 + [P ]
KP

+ [R]
KR

. (S14)

This is the thermodynamic representation that would be obtained following the approach of Buchler,
Gerland, and Hwa [3]. Here we see that the probability is still determined by considering the set of states
available to the promoter, but with the corresponding Boltzmann weight for binding by RNA polymerase
defined by [P ]/KP , and that of LacI by [R]/KR.

Comparing the statistical mechanical equation of pbound in Equation S10 with the thermodynamic
representation in Equation S14 above, we find that

KP =
NNS
Vcell

e−β∆εP , (S15)

and

KR =
NNS
Vcell

e−β∆εR . (S16)

Here Vcell refers to the volume of the cell and is used to translate between protein copy numbers and
concentrations. In the in vivo context considered here, the dissociation constants reflect binding by
proteins that are otherwise assumed to be bound to the nonspecific genomic background, and will generally
differ from what might be obtained from in vitro measurements [4]. Hence, we argue that both the
statistical mechanical and thermodynamic formulations represent equivalent descriptions. The main
distinction is that the statistical mechanical formulation is explicit in describing the nonspecific genomic
background through the term NNS and assuming one copy of the promoter.

S3. The equilibrium assumption

Having established the conditions under which we can connect the probability of finding RNA poly-
merase bound to the promoter, pbound, with the rate of mRNA production, we now ask whether it is
reasonable to use the tools of statistical mechanics to calculate pbound. While we are encouraged by the
apparent validity of the theory based on the agreement with experimental data shown throughout the
main text, here we will carefully consider the equilibrium assumption that underlies calculating pbound in
the context of our minimal parameter set (defined in Figure 13(B)). While it will be shown below that
the rates of RNA polymerase binding and unbinding are incompatible with an equilibrium assumption
for binding by RNA polymerase, we will find that under the weak-promoter approximation, there exists
a regime where it is indeed reasonable to apply a statistical mechanical treatment to calculate pbound.

First, we focus on the model of an unregulated promoter shown in Figure S2(A). Here, the promoter
can be unoccupied or occupied by RNA polymerase. The fraction of promoters in each state is denoted
by punbound and pbound, respectively. When RNA polymerase is bound it can also initiate transcription
at a rate r. Upon RNA polymerase escape from the promoter, the system is taken back to an unoccupied
state. The rate of change in the fraction of occupied promoters is given by

dpbound
dt

= k(P )
on punbound − k

(P )
offpbound − r pbound (S17)

while the rate of mRNA production can be written as

dm

dt
= rpbound (S18)
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Figure S2. Exploring the equilibrium assumption for the constitutive promoter. (A) Kinetic scheme for a constitutive
promoter. (B) Stochastic simulations of promoter state and initiation events for different parameters of the constitutive
promoter.
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which corresponds to the rate of mRNA production as posited by the occupancy hypothesis.
We next seek to establish under what conditions we can calculate pbound using statistical mechanics.

In the equilibrium limit, pbound for this unregulated promoter can be calculated using the states and
weights defined in Figure 9(A) such that

pequilbound =
P

NNS
e−β∆εp

1 + P
NNS

e−β∆εp
. (S19)

In Appendix S2, we saw that this same expression can be written in the thermodynamic language as

pequilbound =

[P ]
KP

1 + [P ]
KP

, (S20)

where KP is the dissociation constant between RNA polymerase and the promoter. This expression for

pequilbound can be related to the scheme shown in Figure S2(A) by using [P ]/KP = k
(P )
on /k

(P )
off such that

pequilbound =
k

(P )
on

k
(P )
on + k

(P )
off

. (S21)

In order to calculate pbound without enforcing equilibrium, we invoke steady-state in the fraction of
occupied and unoccupied promoters such that Equation S17 can be written as

0 = k(P )
on punbound − k

(P )
offpbound − r pbound. (S22)

We now make use of the fact that the probabilities are normalized, pbound + punbound = 1 in order to
obtain

pbound =
k

(P )
on

k
(P )
on + k

(P )
off + r

. (S23)

Clearly, pbound in Equation S23 is not equal to pequilbound in Equation S21. The only way to recover pequilbound

is for the rate of initiation r to be much slower that one of the other rates in the system. Namely,

we need r � k
(P )
on or r � k

(P )
off such that k

(P )
on + k

(P )
off + r ≈ k

(P )
on + k

(P )
off . These different limits are

explored in Figure S2(B) through stochastic simulations that calculate the promoter state and initiation
events as a function of time. In the first three simulations within Figure S2(B), we show how, when the
conditions described above are met, the promoter cycles multiple times between its bound and unbound
state before an initiation event ensues. This back-and-forth between the bound and unbound states leads
to quasiequilibrium. That is, the fact that the transitions between the bound and unbound states are
faster than the rate of initiation allows us to invoke separation of time scales such that, at each time
point, we can use statistical mechanics to describe the equilibrium between these two states. However, if
r is larger than these transition rates, most instances of the promoter being bound lead to an initiation
event as shown in the last simulation in the Figure S2(B) and there is no longer a separation of time
scales.

Interestingly, the inferred transition rates from Figure 13(B) do not fulfill this condition as k
(P )
on , k

(P )
off <

r. Thus, at least a priori, equilibrium cannot be invoked to describe the transcription of an unregulated
lac promoter. However, the successes of the theory at predicting experiments suggest that, under certain
conditions, we are still allowed to invoke the quasi-equilibrium assumption for the regulated lac promoter.

We next consider the kinetic scheme for the regulated promoter, shown in Figure S3(A). The reader is
reminded that this scheme does not make any assumption about the relative strength of each transition
rate or about equilibrium. In this context, we are first interested in asking whether the probability of
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finding RNA polymerase bound to the promoter p(3) = pbound, which we solved for in Equation 16,

is equivalent to the same probability that can be calculated in the equilibrium case, pequilbound, shown in
Equation 4.

To make progress, we rewrite pequilbound in Equation 4 in the language of dissociations constants

pequilbound =

[P ]
KP

1 + [P ]
KP

+ [R]
KR

. (S24)

Invoking the identities introduced in Section 4.2 such that k
(R)
on = k

(R)
+ [R] and k

(P )
on = k

(P )
+ [P ], and the

definition of the dissociations constant for repressor and RNA polymerase given by k
(R)
off/k

(R)
+ = KR and

k
(P )
off/k

(P )
+ = KP , respectively, we obtain

pequilbound =

k(P )
on

k
(P )
off

1 + k
(P )
on

k
(P )
off

+ k
(R)
on

k
(R)
off

. (S25)

In contrast, pbound from Equation 16, which is absent of any assumption of equilibrium, is given by

pbound =

k(P )
on

k
(P )
off+r

1 + k
(P )
on

k
(P )
off+r

+ k
(R)
on

k
(R)
off

. (S26)

Again, as with the unregulated promoter, we find that the expression for pbound is not equal to pequilbound. One
way to alleviate this discrepancy is through the quasiequilibrium assumption noted above, requiring that

the rate of RNA polymerase unbinding is much faster than the rate of initiation, k
(P )
off � r. However,

Figure 13(B) reveals that k
(P )
off ≈ r and not k

(P )
off � r as demanded above for the quasiequilibrium

approximation to apply. Interestingly, at least for the case of simple repression considered here, we will
see below that the equilibrium assumption can still be invoked under certain conditions for the calculation
of the fold-change in gene expression.

In Equation 17 in the main text, we calculated the fold-change in gene expression corresponding to
the kinetic scheme presented in Figure 12 and reproduced in Figure S3(A). This calculation made no
assumption regarding equilibrium and resulted in

fold-change =

1 +
k(P )
on

k
(P )
off+r

1 + k
(P )
on

k
(P )
off+r

+ k
(R)
on

k
(R)
off

. (S27)

Our objective is then to determine under what limits we can reduce this fold-change to its equilibrium
counterpart obtained in Equation 7 or in the context of the weak-promoter approximation shown in
Equation 8.

As expected from our calculations on the applicability of equilibrium to derive pbound, if we assume

that k
(P )
off � r, Equation S27 reduces to the fold-change in equilibrium shown in Equation 7. We already

saw that this limit is not consistent with the inferred rates. However, instead, consider the limit where

k
(P )
on � k

(P )
off + r. In this case, we can neglect the term

k(P )
on

k
(P )
off+r

in Equation S27 such that the fold-change

reduces to

fold-change ≈ 1

1 + k
(R)
on

k
(R)
off

=
1

1 + [R]
KR

, (S28)
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Figure S3. Exploring the equilibrium assumption for simple repression. Stochastic simulations of promoter state and
initiation events for the kinetic scheme introduced in Figure 12 for different parameters of the regulated promoter, for the

case where k
(P )
on � k

(P )
off + r. Here we observe many more binding and unbinding events by the repressor than by RNA

polymerase, characteristic of our statistical mechanical description. The parameters used are k
(P )
on = 0.1 min−1,

k
(P )
off = 1 min−1, k

(R)
on = 0.5 min−1, k

(R)
off = 0.5 min−1, and r = 60 min−1.

which corresponds to the fold-change in equilibrium under the weak-promoter approximation shown in
Equations 8 and 9. In Figure S3(B) we explore this regime using stochastic simulations. The simulation
reveals that, in this limit, the promoter mostly transitions between its repressor-occupied state and its
empty state. Only rarely will the system transition to the RNA polymerase-bound state and, on these
rare occasions, this event almost always leads to the initiation of transcription and the return of the
promoter to its empty state. As a result, there is a clear separation of time scales between the process of
repressor binding and unbinding and the subsequent steps in the transcriptional cascade. This separation
of time scales justifies the applicability of the quasiequilibrium assumptions to calculate the fold-change
in gene expression in terms of the probability of repressor binding.

As seen in Figure 13(B), our estimates for k
(R)
on , k

(R)
off and r suggest that we are in this regime where

the fold-change in gene expression can be calculated using the tools of statistical mechanics despite the
fact that the probability of RNA polymerase binding to the promoter cannot be obtained using such
equilibrium considerations. Thus, by considering fold-change instead of pbound directly, we are able to
ignore the potentially non-equilibrium behavior of RNA polymerase.

S4. The nonspecific genomic background

A simplifying assumption often made in thermodynamic models of transcription is the idea that the
binding of transcription factors to nonspecific sites is characterized by a single binding energy as shown in
Figure S4(A). In this case, the partition function for putting P polymerases on the nonspecific background
is

ZNS(P,NNS) =
NP
NS

P !
e−βPεNS . (S29)

Of course, this is a convenient simplifying assumption that is pedagogically helpful, but raises the question
of whether it masks some important effect. In fact, as we show in the remainder of this section, even when
the nonspecific background is characterized by a distribution of energies, ultimately, it can be represented
by an equation of the form Equation S29, but with the energy εNS replaced by an effective energy.

To get a feeling for how the effective energy arises, we begin with a toy model of the nonspecific
background as shown in Figure S4(B). In this case, the P polymerases are distributed between the
NNS/2 sites available with binding energy ε1 = ε̄+ ∆ and the NNS/2 sites available with binding energy
ε2 = ε̄ −∆ such that ε̄ is the mean non-specific binding energy. To compute the partition function, we
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Figure S4. Increasingly sophisticated models of the nonspecific background. (A) Uniform background. (B) Two-state
model of the nonspecific background. (C) Nonspecific binding energies characterized by a Gaussian distribution.

need to sum over all the ways of distributing the P polymerases over the two nonspecific reservoirs. We
imagine that the number bound on reservoir 1 is i and the number bound on reservoir 2 is P − i, and
then sum over all i ranging from i = 0 all the way to i = P , resulting in

ZNS =

P∑
i=0

g1(i)g2(P − i)e−β[iε1+(P−i)ε2], (S30)

where g1(i) is the number of ways of distributing i polymerases over the NNS/2 sites of reservoir 1 and
g2(P − i) is the number of ways of distributing P − i polymerases over the NNS/2 sites of reservoir 2.
Because i << NNS/2, we can write g1(i) as

g1(i) ≈
(NNS2 )i

i!
(S31)

and similarly write g2(P − i) as

g2(P − i) ≈
(NNS2 )P−i

(P − i)!
. (S32)

In light of these results, we can now rewrite the partition function for nonspecific binding as

ZNS =

P∑
i=0

(NNS2 )P

i!(P − i)!
e−β[iε1+(P−i)ε2] (S33)

which can be rewritten as

ZNS =
(NNS2 )P

P !
e−βPε2

P∑
i=0

P !

i!(P − i)!
e−βi(ε1−ε2), (S34)
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where we have multiplied the previous expression by P !/P ! = 1 in anticipation of beating our formula
into the form of a binomial. Indeed, our sum is now of the form of a binomial allowing us to use

P∑
i=0

P !

i!(P − i)!
xP = (1 + x)P . (S35)

As a result, we can write our partition function in the form

ZNS =
NP
NS

P !

1

2P
(e−βε2(1 + e−β(ε1−ε2)))P . (S36)

This should be compared with

ZNS =
NP
NS

P !
e−βPεNS (S37)

which is the result for the partition function for the most simple model in which the nonspecific background
is assumed to be uniform.

We now want to see whether our expression given in eqn. S36 is equivalent to the single reservoir
model. By equating eqn. S36 and eqn. S37 and taking the log of both sides we have

εNS = kBT ln2 + ε2 − kBT ln (1 + e−β(ε1−ε2)) (S38)

We can simplify this by noting that the term involving the logarithm can be simplified as

ln(1 + e−β(ε1−ε2)) = ln(1 + e−2β∆) ≈ ln(1 + 1− 2β∆) ≈ ln 2 + ln (1− β∆), (S39)

where we have used the fact that ε1 − ε2 = 2∆. Given that β∆ << 1 (i.e. the energy difference between
the two states is small), we can use the Taylor series ln (1− x) ≈ −x with the result that

εNS = ε̄ (S40)

This result shows us that in the toy model of the nonspecific background of Figure S4(B), the two
nonspecific backgrounds are equivalent to a single reservoir with an energy given by the mean of the
energies of the two reservoirs, establishing that in this pedagogically motivated model we can use a single
energy to describe the nonspecific background. Now let’s move to the case of realistic distribution of
nonspecific energies.

Figure 17 shows the distribution of nonspecific binding energies obtained by taking the energy matrix
describing the binding of LacI and applying it to all sites across the E. coli genome (also see Figure S4(C)
for a comparison with the other models considered thus far). Other examples of the distribution of
nonspecific binding energies have been considered as well with similar outcome [2, 10]. As a result, we
can write the number of binding sites with energy between E and E + dE as

n(E) =
NNS√
2πσ2

e−(E−ε̄)2/2σ2

, (S41)

where ε̄ is the mean of the distribution of nonspecific binding energies and σ provides a measure of the
width of that distribution.

To compute the partition function for the binding of a polymerase, for example, to this nonuni-
form genomic background, we need to sum over all the microscopic states available to the polymerase.
Symbolically, the quantity we need to evaluate is

ZNS =
∑
E

n(E)e−βE . (S42)
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In fact, since we are assuming a continuous distribution of energies, this really is an integral of the form

ZNS =

∫ ∞
∞

e−βE
NNS√
2πσ2

e−(E−ε̄)2/2σ2

dE. (S43)

This result can be rewritten as

ZNS =
NNS√
2πσ2

e−ε̄
2/2σ2

∫ ∞
∞

e−
1

2σ2
[E2−2Eε̄+2σ2βE]dE. (S44)

By completing the square, this integral results in

ZNS = NNSe
−βε̄eβ

2σ2/2 (S45)

which should be compared with the result we would get if we assumed a homogeneous nonspecific back-
ground with only a single binding energy εNS resulting in the form

ZNS = NNSe
−βεNS (S46)

By equating these two expressions, we find that we can treat the nonuniform background as though it
were a homogenous genomic background with effective binding energy

εeff = ε̄− βσ2

2
. (S47)

The result above considered a single polymerase or repressor molecule bound to the nonuniform non-
specific background. What happens in the case where we have P polymerases bound nonspecifically?
Because each of those polymerases binds independently of the others (because the number of polymerases
is of order 103 − 104 and the genome size is greater than 106 we don’t need to worry about polymerases
interfering with each other), the total partition function for all of these polymerases bound to the non-
specific background is given by

ZNS(P,NNS) =
(
∫∞
∞ e−βE NNS√

2πσ2
e−(E−ε̄)2/2σ2

dE)P

P !
=
NP
NSe

−βPεeff

P !
, (S48)

where once again εeff = ε̄ − βσ2

2 and this result shows that if the distribution of binding energies is
Gaussian, then we can treat the nonspecific background as being equivalent to a uniform nonspecific
background with energy εeff . The point of all of this analysis was simply to examine the validity of the
convenient simplifying assumption of some thermodynamic models of treating the nonspecific background
as uniform. As shown elsewhere [2, 10], this approximation is quite reasonable.

S5. Accounting for the effect of nonspecific promoter occupancy

So far our statistical mechanical treatment of the simple repression architecture has treated the RNA
polymerase and LacI proteins as isolated from the pool of other transcription factors that are also littered
across the genomic DNA. In Figure 6 we plot the abundance of DNA-binding proteins per cell across a
number of growth conditions using the proteomic study from Schmidt et al. [11]. These values include
nucleoid-associated proteins that also bind the genomic DNA. For growth in M9 minimal media with
0.5% glucose, we find that there are about 3× 105 DNA-binding proteins per cell and we can use this to
make a simple estimate of genomic occupancy by these proteins. Let us assume that each transcription
factor binds the DNA as a dimer (this will vary with the transcription factor species) and occupies a DNA
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length of 15 bp (this varies from 7 bp to 38 bp in E. coli for transcription factors listed on RegulonDB;
[12]). For growth in 0.5% glucose, we find that about 2.3 Mbp or about half the genome is occupied (15
bp×3×105DNA-binding proteins×1/2 dimers per protein).

Given the high occupancy of DNA-binding proteins on the genomic DNA estimated above, there
might be some expectation that, in contrast to our current model of simple repression, the occupancy
of the genome by these other DNA-binding proteins cannot be ignored. Here we consider the effect of
their occupancy by adding an explicit set of states to represent the case where these additional DNA-
binding proteins can occupy the roughly 60 bp promoter region of our simple repression architecture.
For simplicity we assume that these proteins only bind nonspecifically, ignoring any potential sequence-
specific effects. In Figure S5(A) we show the states and weights of the simple repression promoter, where
we have included this additional set of states. We could have extended this further, either by treating each
additional DNA-binding protein species separately, or by being more careful about our specification of
these additional states. However, the point of this exercise is to see what effect the pool of nonspecifically
bound DNA-proteins might have on our model. We can calculate pbound which, if we invoke the weak

promoter approximation
(

P
NNS

e−β∆εP � 1
)

, is given by

pbound =
P

NNS
e−β∆εP

1 + L · CNSNNS
+ R

NNS
e−β∆εR

. (S49)

L represents the number of ways other DNA-binding proteins may bind the promoter nonspecifically, and
for simplicity is taken as the length of the promoter region (L ≈ 60 bp). CNS represents the copy number
of all other DNA-binding proteins bound to the genome that we noted earlier. Fold-change, which is the
ratio of pbound(R ≥ 0) to pbound(R = 0), will then be given by

fold-change =
1 + L · CNSNNS
P

NNS
e−β∆εP

·
P

NNS
e−β∆εP

1 + L · CNSNNS
+ R

NNS
e−β∆εR

. (S50)

Here, the RNA polymerase components P
NNS

e−β∆εP cancel out and upon some rearrangement, we find
that

fold-change =
1

1 + R
NNS

e−β∆εR(1 + L · CNSNNS
)−1

. (S51)

Using CNS ≈ 1.5 × 105, which is based on our estimate of the total DNA-binding protein copy number
found above for growth in glucose (bound as dimers), we calculate a value of L · CNSNNS

≈ 2. Importantly,
we find that this additional term in our fold-change equation does not depend on the key parameters of
our simple repression architecture, namely the repressor copy number or repressor binding energy, and
we can arrive back to our original form of fold-change by a defining N ′NS = NNS × (1 + L · CnsNNS

).
The estimates so far were based on assuming that cells grow in 0.5% glucose at a particular doubling

rate. In different media, the growth rate will change leading also to a modulation in the total number
of transcription factors: faster growing cells have a larger protein complement than their slower-growing
counterparts. However, faster growing cells also have more copies of the genome as a means to keep
up with the fast replication pace. Figure S5(B) shows that these two effects cancel each other out.
Specifically, variations in the number of transcription factors as a result of changes in growth rate are
counteracted by the corresponding change in the average genome copy number per cell such that the
number of nonspecific binding proteins per base pair remains approximately constant throughout a wide
range of growth conditions. As a result, the small effect of considering all nonspecifically bound tran-
scription factors remains unaltered regardless of growth rate.

References



13

0

600,000

500,000

400,000

300,000

200,000

100,000

tr
an

sc
ri

p
ti

o
n
 f

ac
to

r
co

p
y 

n
u
m

b
er

per celldecreasing growth rate

per genome equivalent

gl
uc

os
eLB

gl
yc

er
ol

 +
 A

A

ac
et

at
e

fu
m

ar
at

e

gl
uc

os
am

in
e

gl
yc

er
ol

py
ru

va
te

ch
em

os
ta

t µ
=0

.5

ch
em

os
ta

t µ
=0

.3
5

ch
em

os
ta

t µ
=0

.2
0

ch
em

os
ta

t µ
=0

.1
2

st
at

io
na

ry
 p

ha
se

 1
 d

ay

st
at

io
na

ry
 p

ha
se

 3
 d

ay
s

os
m

ot
ic-

st
re

ss
 g

lu
co

se

42
C g

lu
co

se

pH
6 

gl
uc

os
e

xy
lo

se

m
an

no
se

ga
la
ct
os

e

su
cc

in
at

e

fru
ct
os

e

(A)

(B)

state statistical weight description

RNA polymerase
bound 

P
NNS

e–βΔεP

R

NNS

CNS

NNS

e–βΔεR
repressor

bound 

empty promoter 1

nonspecific
transcription
factor bound

L 

~ 60bp

Figure S5. A crowded chromosome. (A) States and Weights for simple repression with a pool of nonspecific DNA
binding proteins. RNA polymerase (light blue), a repressor, and other nonspecific DNA binding proteins compete for
binding to a promoter. The R repressors and P RNA polymerase bind with energies ∆εR and ∆εP , respectively. In
addition, there are CNS DNA binding proteins per cell that can bind the promoter of length L ≈ 60 bp. These proteins
bind nonspecifically and therefore only contribute an entropic term. NNS represents the number of nonspecific binding
sites on the genome. (B) Measured protein copy numbers are shown for DNA binding proteins in E. coli across 22 growth
conditions. Protein copy numbers per cell were determined by Schmidt et al. [11] with proteins identified based on their
annotation in EcoCyc. Error bars are propagated from the reported standard deviations. Protein copy numbers per
genome equivalent were calculated by estimating the total genomic content as a function of growth rate using Cooper and
Helmstetter’s model of E. coli chromosomal replication [13, 14, 15].
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