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Summary
High-Performance Liquid Chromatography (HPLC) and Gas Chromatography are analytical
techniques which allow for the quantitative characterization of the chemical components of
mixtures [Figure 1(A)]. Technological advancements in sample preparation and mechanical
automation have allowed HPLC to become a high-throughput tool (Broeckhoven et al., 2019;
Kaplitz et al., 2020) which poses new challenges for reproducible and rapid analysis of the
resulting chromatograms. Here we present hplc-py, a Python package that permits rapid and
reliable quantitation of component signals within a chromatogram for pipelined workflows.
This is achieved by a signal detection and quantitation algorithm which i) identifies windows
of time which contain peaks and ii) infers the parameters of a mixture of amplitude-weighted
skew-normal distributions which sum to reconstruct the observed signal. This approach is
particularly effective at deconvolving highly overlapping signals, allowing for precise absolute
quantitation of chemical constituents with similar chromatographic retention times.

Statement of Need
Chromatography has become a gold-standard method across diverse fields for precise quantita-
tion and separation of chemical mixtures. A key objective in the analysis of chromatographic
data is determining the time-integrated signal of each component, a process which becomes
challenging when chemically-similar components result in strongly overlapping signals [such as
the blue and green symbols in Figure 1(B)]. As of this writing, many of the available tools
for signal quantification, such as the open source Python 2.7 software HappyTools (Jansen et
al., 2018), Microsoft Excel applications (Cruz Villalon, 2023), or proprietary solutions such
as Chromeleon by Thermo-Fisher and Empower by Waters, rely on manual processing of the
chromatograms and curation of the resulting quantitative data. Furthermore, we are unaware
of any tools that can reliably deconvolve highly overlapping signals. hplc-py provides a pro-
grammatic interface by which users can quickly and reliably quantify components of complex
chromatograms in a few lines of code [Figure 1(C)]. Importantly, the peak detection and fitting
algorithm of hplc-py is able to deconvolve completely overlapping signals, allowing for the
accurate quantification of mixtures otherwise not separable without extensive experimental
optimization.
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chromatogram.txt

[LC Chromatogram(Detector A-Ch1)]
Intensity Units,mV
Intensity Multiplier, 0.001
Wavelength(nm), 254nm
time,signal
0.00000,-4
0.00833,-4

analysis.py$>

1 from hplc.io import load_chromatogram
2 from hplc.quant import Chromatogram
3 data = load_chromatogram(’chromatogram.txt’,
4             cols=[’time’, ‘signal’])
5 chrom = Chromatogram(data)
6 peaks = chrom.fit_peaks()
7 chrom.show()

Figure 1: Chromatographic separation of chemical compounds and their detection with hplc-py. (A)
Diagrammatic view of the chromatographic principle. (B) A simulated chromatogram of the three
separated compounds diagrammed in panel A. (C) Passing this simulated chromatogram through the
methods of the Chromatogram object of hplc-py allows for deconvolution and quantification of individual
signals which sum to reconstruct the observed chromatogram. Code used to generate panels (B) and (C)
is available on the GitHub repository publication branch

Methodology
The major components of hplc-py are diagrammed in Figure 2(A). A helper function,
load_chromatogram, can be used to read a raw text file, filter through the metadata in
the header, and retrieve the time and signal data, given user-supplied column names [Figure
2(B)]. The resulting pandas DataFrame object can be passed to the Chromatogram object,
which has a slew of methods for cropping, fitting, scoring, quantifying, and plotting the
chromatogram. The core algorithmic steps employed by hplc-py are diagrammed in Figure
2(C) and presented in detail on the package documentation. Once a Chromatogram has been
instantiated, automated detection and quantification of peaks which compose the observed
chromatogram can be executed by calling the .fit_peaks method. Under the hood, this
method calls three helper functions [diagrammed in Figure 2(C)] which preform the following
steps:

i) Estimation of and correction for a variable baseline. A common challenge in the analysis
of HPLC data is the identification and removal of spurious background signal. While the
physicochemical basis for baseline variance is complex (Choikhet et al., 2003; Felinger & Káré,
2004), numerous methods have been developed for their correction (Macko & Berek, 2001;
Mecozzi, 2014). In hplc-py, this is implemented using the Sensitive Nonlinear Iterative Peak
(SNIP) method originally developed for smoothing of spectroscopic data (Morháč & Matoušek,
2008).

ii) Peak identification and separation of the chromatogram into region windows. After any
variable background has been identified and corrected, peak-filled regions of the chromatogram
are identified through the application of topographic prominence thresholds, a method common
in the signal processing of neuron action potentials (Choi et al., 2017). With peak locations
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identified, the chromatogram is further clipped into windows–regions in time when chemical
species co-elute and therefore overlap.

iii) Fitting a mixture of amplitude-weighted skew-normal distributions to each peak window.
For an assigned peak window with 𝑁 peaks, hplc-py fits a convolution of 𝑁 amplitude-
weighted skew-normal distributions to the observed signal 𝑆 within that window. A weighted
skew-normal distribution is parameterized by an amplitude 𝐴, location and scale parameters 𝜏
and 𝜎, and a skew parameter 𝛼 and has the form

𝑆(𝑡) = 𝐴√
2𝜋𝜎2

exp [−(𝑡 − 𝜏)2

2𝜎2 ] [1 + erf(𝛼(𝑡 − 𝜏)√
2𝜎2

)] , (1)

where 𝑡 is the time point and erf is the error function. The skew-normal distribution is useful
in fitting chromatogram signals as peaks are often asymmetric with high skewness, a property
described by a single parameter 𝛼.

The .fit_peaks method returns a Pandas DataFrame [Figure 2(D)] which reports the best-fit
values for each parameter for each peak. Importantly, it also returns the integral of Equation 1
for each compound over a given time window which is linearly proportional to the concentration
of the analyte (Moosavi & Ghassabian, 2018). Figure 2(E-F) demonstrates that the peak
quantification algorithm of hplc-py yields a linear relationship between concentration and
integrated area for a standard curve of a lactose sugar solution across a decade of concentrations.
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i background subtraction ii  peak detection
chrom.correct_baseline()

chrom.fit_peaks()

instantiationhplc-py/io.py

hplc-py/quant.py

chrom = Chromatogram(data)
data = load_chromatogram(fname,cols)

chrom._assign_windows()

iii  peak fitting
chrom.deconvolve_peaks()
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fn: load_chromatogram()

class: Chromatogram()

Given a chromatogram .txt file, parse 
header and  identify measurements given 
names of “time” and  “signal” columns.

mth: crop()
Restricts time-dimension of chromatogram 
in-place, given start and stop bounds.

mth: assess_fit()
Prints a report card scoring how well the 
fit mixture reconstructs the raw 
chromatogram.

mth: map_peaks()
Assigns a compound identity to each peak 
given user-supplied dictionary of identities 
and retention time. Given a linear 
calibration curve, the concentration of 
each compound is also computed.

mth: show()
Plots the baseline-corrected chromato-
gram, estimated baseline signal, individual 
peaks, and inferred mixture of all fit peaks. 

mth: fit_peaks()
Infers and subtracts baseline using the 
SNIP algorithm, chunks chromatogram 
into regions with isolated and overlapping 
peaks, fits a mixture of weighted skew-nor-
mal distributions, and computes peak 
properties (e.g. integrated area, retention 
time).

Figure 2: The peak quantification algorithm implemented in hplc-py as applied to a real chro-
matogram. (A) The hplc-py data model. (B) A Chromatogram object is instantiated by loading a raw
chromatogram text file as a Pandas DataFrame. (C) The peak quantification operations undertaken
by the fit_peaks() method of a Chromatogram object. (D) A representative peak quantification table
returned by .fit_peaks(). (E) Representative signals of a lactose solution with different concentrations.
(F) A calibration curve generated from panel E using hplc-py. Code used to generate these figure panels
are available on the GitHub repository publication branch.

Constraining Peak Parameters and Overlapping Signals
The separation efficiency of different chemical species through HPLC is dependent on myriad
variables, including chemical properties of the column, the solvent, the operational temperature,
and column dimensions. It is common for some chemical species to co-elute in a given
experimental configuration. For example, the sugar lactose [Figure 3(A, blue)] and inorganic
ion phosphate [Figure 3(A, purple)] have almost identical elution times on a Rezex Organic
Acid H+ 8% column with a 2.5 mM H2SO4 mobile phase, resulting in a convolution which can
be mistaken for a single peak [Figure 3(A, dashed line)]. As a consequence, these signals would
be classified as inseparable using other HPLC data analysis programs and further experimental
optimization would be needed to resolve them.

However, as hplc-py fits mixtures of weighted distributions instead of empirically summing over
the signal itself, it is possible to quantitatively resolve these signals. This can be performed by
tightly constraining the parameters of one of the two confounding signals, such as phosphate. As
an example, we have considered a use case where phosphate is present in a fixed concentration
across samples whereas the lactose concentration can vary. Under such a scenario, hplc-py
can be used to independently characterize the parameters which define the size and shape of
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the phosphate peak [Figure 3(B)]. With these parameters in hand, one can tightly constrain
the parameter regimes (as described in the hplc-py documentation) for the phosphate signal
within a mixture [Figure 3(C)], allowing for effective estimation of parameter values for the
lactose peak. Using this approach and the lactose calibration curve shown in Figure 2(E),
we were able to measure the lactose concentration within a wide range of lactose-phosphate
mixtures with quantitative accuracy [Figure 3(D)]. Such accuracy is lost when parameters for
both the phosphate and lactose peaks are allowed to be freely estimated [Figure 3(F)], even
though the inferred chromatogram reconstruction is in agreement with the observed signal
[Figure 3(E)].
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Figure 3: hplc-py decomposes completely overlapping signals of phosphate and lactose in a real
chromatogram with quantitative accuracy. (A) Three overlaid chromatograms of lactose (blue), phosphate-
based buffer (purple), and a lactose-phosphate mixture as detected on a Rezex Organic Acid H+(8%)
column with 2.5 mM H2SO4 mobile phase. (B) The best-fit lineshape (red) of the phosphate signal
(purple) as computed by hplc-py. The inferred underlying distributions of lactose (blue) and phosphate
(purple) with constrained or unconstrained phosphate parameters in (C) and (D), respectively. Inferred
lactose concentration compared to the known concentration in the mixture for the constrained and
unconstrained phosphate parameters are shown in (E) and (F), respectively. Code used to perform this
analysis and generate these figures is available on the GitHub repository publication branch

In total, hplc-py provides a programmatic interface that allows experimentalists to rapidly
quantify chemical signals from chromatograms, even when there is exceedingly high overlap
between analytes. While we have tailored the default parameters of the hplc-py methods
to be amenable to typical HPLC chromatographic outputs, we have also made it simple to
manually adjust different aspects of the peak quantification algorithm, including parameters
controlling the degree of background subtraction, the constraint of fitting parameters, and
even enforcing the estimation of peaks with low topographic prominence. Additionally, we
have developed heuristics the user can employ to assess quality of the reconstruction, though
we emphasize that this is not to be used as a measure of uncertainty. We hope that hplc-py

can act as a tool that can make scientific interpretation of results, rather than their generation,
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the next bottleneck in HPLC-based experiments.

Data & Code Availability
All experimental data and code used to process data schematized in the Figures are publicly
available on the hplc-py GitHub repository publication branch. Data for Figure 3 was
collected as described in the README.md file of the experimental data folder of the repository
publication branch.
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