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ABSTRACT

The intimate relationship between the environment and cellular
growth rate has remained a major topic of inquiry in bacterial physi-
ology for over a century. Now, as it becomes possible to understand
how the growth rate dictates the wholesale reorganization of the in-
tracellular molecular composition, we can interrogate the biophysi-
cal principles underlying this adaptive response. Regulation of gene
expression drives this adaptation, with changes in growth rate tied to
the activation or repression of genes covering enormous swaths of
the genome. Here, we dissect how physiological perturbations alter
the expression of a circuit which has been extensively characterized
in a single physiological state. Given a complete thermodynamic
model, we map changes in physiology directly to the biophysical pa-
rameters which define the expression. Controlling the growth rate
via modulating the available carbon source or growth temperature,
we measure the level of gene expression from a LacI-regulated pro-
moter where the LacI copy number is directly measured in each con-
dition, permitting parameter-free prediction of the expression level.
The transcriptional output of this circuit is remarkably robust, with
expression of the repressor being largely insensitive to the growth
rate. The predicted gene expression quantitatively captures the ob-
servations under different carbon conditions, indicating that the bio-
physical parameters are indifferent to the physiology. Interestingly,
temperature controls the expression level in ways that are incon-
sistent with the prediction, revealing temperature-dependent effects
that challenge current models. This work exposes the strengths and
weaknesses of thermodynamic models in fluctuating environments,
posing novel challenges and utility in studying physiological adapta-
tion.
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Introduction

Cellular physiology is inextricably tied to the extracellular en-
vironment. Fluctuations in nutrient availability and variations
in temperature, for example, can drastically modulate the cell’s
growth rate, which is often used as a measure of the evolu-
tionary fitness (1). In response to such environmental insults,
cells have evolved myriad clever mechanisms by which they
can adapt to their changing surroundings, many of which in-
volve restructuring their proteome such that critical processes
(i.e. protein translation) are allocated the necessary resources.
Recent work exploring this level of adaptation using mass spec-
trometry, ribosomal profiling, and RNA sequencing have re-
vealed that various classes of genes (termed "sectors") are tuned
such that the protein mass fraction of the translational machin-
ery is prioritized over the metabolic and catabolic machinery in
nutrient replete environments (2–6). This drastic reorganization
is mediated by the regulation of gene expression, relying on the

concerted action of myriad transcription factors. Notably, each
gene in isolation is regulated by only one or a few components
(7). The most common regulatory architecture in Escherichia
coli is the simple repression motif in which a transcriptional re-
pressor binds to a single site in the promoter region, occluding
binding of an RNA polymerase (7, 8). The simple activation
architecture, in which the simultaneous binding of an activator
and an RNA polymerase amplifies gene expression, is another
common mode of regulation. Combinatorial regulation such
as dual repression, dual activation, or combined activation and
repression can also be found throughout the genome, albeit
with lower frequency (9). The ubiquity of the simple repression
and simple activation motifs illustrate that, for many genes, the
complex systems-level response to a physiological perturbation
boils down the binding and unbinding of a single regulator to
its cognate binding sites.

Despite our knowledge of these modes of regulation, there
remains a large disconnect between concrete, physical mod-
els of their behavior and experimental validation. The simple
repression motif is perhaps the most thoroughly explored the-
oretically and experimentally (9) where equilibrium thermo-
dynamic (10–15) and kinetic (16–19) models have been shown
to accurately predict the level of gene expression in a variety
of contexts. While these experiments involved variations of
repressor copy number, operator sequence, concentration of
an external inducer, and amino acid substitutions, none have
explored how the physiological state of the cell as governed by
external factors influences gene expression. This is arguably
one of the most critical variables one can experimentally tune
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to understand the role of these regulatory architectures play in
cellular physiology writ large.

In this work, we interrogate the adaptability of a simple
genetic circuit to various physiological stressors, namely car-
bon source quality and growth temperature. Following the
aforementioned thermodynamic models, we build upon this
theory-experiment dialogue by using environmental conditions
as an experimentally tunable variable and determine their in-
fluence on various biophysical parameters. Specifically, we use
physiological stressors to tune the growth rate. One mecha-
nism by which we modulate the growth rate is by exchanging
glucose in the growth medium for the poorer carbon sources
glycerol and acetate, which decrease the growth rate by a factor
of ≈ 1.5 and ≈ 4 compared to glucose, respectively. We hypoth-
esize that different carbon sources should, if anything, only
modulate the repressor copy number seeing as the relation-
ship between growth rate and total protein content has been
rigorously quantified (1, 5, 6, 20). Using single-cell time-lapse
fluorescence microscopy, we directly measure the copy number
of the repressor in each condition. Under a simple hypothesis,
all other parameters should be unperturbed, and we can thus
rely on previously determined values to make parameter-free
predictions of the fold-change in gene expression.

Despite the decrease in growth rate, both the fold-change
in gene expression and the repressor copy number remains
largely unaffected. We confirm this is the case by examining
how the effective free energy of the system changes between
carbon sources, a method we have used previously to elucidate
parametric changes due to mutations within a transcription
factor (15). This illustrates that the energetic parameters defin-
ing the fraction of active repressors and their affinity for the
DNA are ignorant of the carbon-dependent physiological states
of the cell. Thus, in this context, the values of the biophysical
parameters determined in one condition can be used to draw
predictions in others.

We then examine how variations in temperature influence
the transcriptional output. Unlike in the case of carbon source
variation, temperature dependence is explicit in our model:
the repressor-DNA binding energy and the energetic difference
between the active and inactive states of the repressor are scaled
to the thermal energy of the system at 37◦ C. This is defined via
the Boltzmann distribution which states that the probability of
a state pstate is related to the energy of that state εstate as

pstate ∝ e−εstate/kBT , [1]

where kB is the Boltzmann constant and T is the temperature
of the system. Given knowledge of T for a particular exper-
iment, we can easily draw predictions of the fold-change in
gene expression. However, we find the fold-change in gene
expression is inconsistent with this simple model, revealing
an incomplete description of the energetics. We then examine
how entropic effects neglected in the initial estimation of the
energetic parameters may play an important role; a hypothesis
that is supported when we examine the change in the effective
free energy.

The results presented here are, to our knowledge, the first
attempts to systematically characterize the growth-dependent
effects on biophysical parameters in thermodynamic models of
transcription. While some parameters of our model are affected
by changing the growth rate, they change in ways that are
expected or fall close within our a priori predictions, suggesting

that such modeling can still be powerful in understanding
how adaptive processes influence physiology at the level of
molecular interactions.

RESULTS

Thermodynamic model. We consider a genetic circuit where
the expression of a gene is regulated through the binding of an
allosteric repressor to the promoter, occluding the binding of
RNA polymerase. A thermodynamic rendering of this model,
derived previously (13) and in the SI text, computes the fold-
change in gene expression relative to an unregulated promoter
and has the succinct form

fold-change =
(

1 + pact(c)
R

NNS
e−∆εR/kBT

)−1
, [2]

where R is the total number of allosteric repressors per cell,
NNS is the number of nonspecific binding sites for the repres-
sor, ∆εR is the repressor-DNA binding energy, and kBT is the
thermal energy of the system. The prefactor pact(c) defines the
probability of the repressor being in the active state at a given
concentration of inducer c. In the absence of inducer, pact(c = 0)
can be written as

pact(c = 0) =
(

1 + e−∆εAI/kBT
)−1

, [3]

where ∆εAI is the energy difference between the active and in-
active states. Conditioned on only a handful of experimentally
accessible parameters, this model has been verified using the
well-characterized LacI repressor of Escherichia coli where pa-
rameters such as the repressor copy number and DNA binding
affinity (10), copy number of the regulated promoter (12, 21),
and the concentration of an extracellular inducer (13) can be
tuned over orders of magnitude. It has also been shown that
this model permits the mapping of mutations within the repres-
sor protein directly to biophysical parameters in a manner that
permits accurate prediction of double mutant phenotypes (15).
All of these applications, however, have been performed in a
single physiological state where cells are grown in a glucose-
supplemented minimal medium held at 37◦ C with aeration.
In this work, we challenge this model by changing the envi-
ronmental conditions away from this gold-standard condition,
perturbing the physiological state of the cell.

Experimental Setup. Seminal studies from the burgeoning
years of bacterial physiology have demonstrated a strong de-
pendence of the total cellular protein content on the growth rate
(1, 22, 23), a relationship which has been rigorously quantified
in recent years using mass spectrometry (2, 3, 5) and ribosomal
profiling (6). Their combined results illustrate that modula-
tion of the growth rate, either through controlling the available
carbon source or the temperature of the growth medium, signif-
icantly alters the physiological state of the cell, triggering the
reallocation of resources to prioritize expression of ribosome-
associated genes. Eq. 2 has no explicit dependence on the
available carbon source but does depend on the temperature
through the energetic parameters ∆εR and ∆εAI which are de-
fined relative to the thermal energy, kBT. With this parametric
knowledge, we are able to draw quantitative predictions of the
fold-change in gene expression in these physiologically distinct
states. (3).
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Fig. 1. Control of physiological state via growth rate through environmental factors. (A) Bacterial growth can be controlled by varying the available carbon source (top
panel) or temperature (bottom panel). (B) Bulk bacterial growth curves under all conditions illustrated in (A). The y-axis is the optical density measurements at 600 nm relative
to the initial value. Interval between points is ≈ 6 min. Points and errors represent the mean and standard deviation of three to eight biological replicates. (C) Inferred maximum
growth rate of each biological replicate for each condition. Points represent the doubling time computed from the maximum growth rate. Error bars correspond to the standard
deviation of the inferred growth rate. Where not visible, error bars are smaller than the marker.

We modulated growth of Escherichia coli by varying either
the quality of the available carbon source (differing ATP yield
per C atom) or the temperature of the growth medium [Fig.
1(A)]. All experiments were performed in a defined M9 mini-
mal medium supplemented with one of three carbon sources
– glucose, glycerol, or acetate – at concentrations such that the
total number of carbon atoms available to the culture remained
the same. These carbon sources have been shown to drastically
alter growth rate and gene expression profiles (24), indicating
changes in the proteomic composition and distinct physiologi-
cal states. These carbon sources yield an approximate four-fold
modulation of the growth rate with doubling times ranging
from ≈ 220 minutes to ≈ 65 minutes in an acetate or glucose
supplemented medium, respectively [Fig. 1(B) and (C)]. While
the growth temperature was varied over 10◦ C, both 32◦ and
42◦ C result in approximately the same doubling time of ≈ 90
min, which is 1.5 times slower than the optimal temperature of
37◦ C [Fig. 1(B) and (C)].

The growth rate dependence of the proteome composition
suggests that changing physiological conditions could change
the total repressor copy number of the cell. As shown in our
previous work (13), it can be difficult to differentiate between a
change in repressor copy number R and the allosteric energy
difference ∆εAI as there are many combinations of parameter
values that yield the same fold-change. To combat this degener-
acy, we used a genetically engineered strain of E. coli in which
the expression of the repressor copy number and its regulated
gene product (YFP) can be simultaneously measured. This
strain, used previously to interrogate the transcription factor
titration effect (12), is diagrammed in Fig. 2(A). A dimeric form

of the LacI repressor N-terminally tagged with an mCherry
fluorophore is itself regulated through the action of the TetR
repressor whose level of activity can be modulated through the
addition of the allosteric effector anhydrous tetracycline (ATC).
This dual repression genetic circuit allows for the expression of
the LacI repressor to be tuned over several orders of magnitude.
This is demonstrated in Fig. 2(B) where a titration of ATC in the
growth medium results in a steady increase in the expression
of the LacI-mCherry gene product (red lines and points) which
in turn represses expression of the YFP reporter (yellow lines
and points).

While the mCherry fluorescence is proportional to the re-
pressor copy number, it is not a direct measurement as the
fluorescence of a single LacI-mCherry dimer is unknown a
priori. Using video microscopy, we measure the partitioning
statistics of the fluorescence intensity into two sibling cells after
division [Fig. 2(C)]. This method, described in detail in the
Materials and Methods and in Refs.(12, 25–27), reveals a linear
relationship between the variance in intensity between two sib-
ling cells and the intensity of the parent cell, the slope of which
is equal to the brightness of a single LacI repressor. Since this
measurement is performed simultaneously with measurement
of the expression of the YFP reporter, this calibration factor was
determined for each unique experimental replicate. We direct
the reader to the SI text for a more thorough discussion of this
inference.

Scaling of gene expression with growth rate. Given the single-
cell resolution of our experimental method, we examined how
the cell volume and repressor copy number scaled across the
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Fig. 2. Control and quantification of repressor
copy number. (A) The dual repression expression
system. The inducible repressor TetR (purple blob)
is expressed from a low-copy-number plasmid in the
cell and represses expression of the LacI-mCherry
repressor by binding to its cognate operator (tetO). In
the presence of anhydrous tetracycline (ATC, green
sphere), the inactive state of TetR becomes ener-
getically favorable, permitting expression of the LacI-
mCherry construct (red). This in turn binds to the
lacO operator sequence repressing the expression
of the reporter Yellow Fluorescent Protein (YFP, yel-
low lightbulb). (B) An ATC titration curve showing
anticorrelated YFP (yellow) and mCherry (red) inten-
sities. Reported values are scaled to the maximum
mean fluorescence for each channel. Points and
errors correspond to the mean and standard error
of eight biological replicates. (C) Determination of
a fluorescence calibration factor. After cessation of
LacI-mCherry expression, cells are allowed to divide,
partitioning the fluorescently tagged LacI repressors
into the two daughter cells (left panel). The total in-
tensity of the parent cell is equivalent to the summed
intensities of the daughters. The squared fluctuations
in intensity of the two sibling cells is linearly related
to the parent cell with a slope α, which is the fluo-
rescence signal measured per partitioned repressor
(right panel). Black points represent single divisions
and red points are the means of 50 division events.
Line corresponds to linear fit to the black points with
a slope of α = 740± 40 a.u. per LacI.

different growth conditions at different levels of ATC induction.
In agreement with the literature (1, 20, 28) our measurement
reveals a strong linear dependence of the cell volume on the
choice of carbon source, but no significant dependence on tem-
perature [Fig. 3(A) and (B)]. Additionally, these findings are
consistent across different ATC induction regimes. Together,
these observations confirm that the particular details of our
experimental system does not introduce unintended physiolog-
ical consequences.

Using a fluorescence calibration factor determined for each
experimental replicate [see Fig. 2(C) and Materials & Methods],
we estimated the number of repressors per cell from snapshots
of the mCherry signal intensity of each induction condition. Fig.
3(C) reveals a remarkable insensitivity of the repressor copy
number on the growth rate under different carbon sources.
Despite the change in cellular volume, the mean number of
repressors expressed at a given induction condition is within
error between all carbon sources. Previous work using mass
spectrometry, a higher resolution method, has shown that there
is a slight dependence of LacI copy number on growth rate
expressed from its native promoter (5). It is possible that such
a dependence exists in our experimental setup, but is not de-
tectable with our lower resolution method. We also observe an
insensitivity of copy number to growth rate when the temper-
ature of the system is tuned [Fig. 3 (D)] though two aberrant
points with large error obfuscates the presence of a growth rate
dependence at high concentrations of ATC. For concentrations
below 7 ng /mL, however, the repressor copy number remains
constant across conditions. With no significant change in the
repressor copy number and thus no dependence on the carbon

source in our theoretical model, we are can immediately draw
predictions of the fold-change in gene expression in different
growth media.

Fold-change dependence on carbon quality. Given a priori
knowledge of the biophysical parameter values (10, 13) present
in Eq. 2 and Eq. 3 and direct measurement of the repressor copy
number, we made measurements of the fold-change in gene
expression for each growth medium to test the prediction [Fig.
4 (A)]. We find that the measurements fall upon the predicted
theoretical curve within error, suggesting that the values of the
energetic terms in the model are insensitive to changing carbon
sources. This is notable as glucose, glycerol, and acetate are
metabolized via different pathways, changing the metabolite
and protein composition of the cytosol (29, 30). This result
underscores the utility of these thermodynamic parameters as
quantitative traits in the study of growth-condition dependent
gene expression.

We have previously shown that Eq. 2 can be rewritten into a
Fermi function of the form

fold-change =
1

1 + e−F/kBT
, [4]

where F is the effective free energy difference between the
repressor bound and unbound states of the promoter, also re-
ferred to as the Bohr parameter (9, 13, 31). For the case of an
allosteric simple repression architecture, and given knowledge
of the values of the biophysical parameters, F can be directly
calculated as
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Fig. 3. Scaling of cell size and repres-
sor expression as a function of maxi-
mum growth rate. Dependence of cell
volume on maximum growth rate under
varying (A) carbon sources and (B) temper-
atures. Points and errors correspond to the
mean and standard errors of five to eight
biological replicates. The cell volume was
calculated by approximating each cell as a
spherocylinder and using measurements
of the short and long axis lengths of each
segmentation mask. Measured volumes
are from snapshots of a nonsynchronously
growing culture. The measured repressor
copy number for each ATC induction con-
dition (colored lines) as a function of the
growth rate for various (C) carbon sources
and (D) temperatures. Points and errors
represent the mean and standard error of
five to eight biological replicates. Colors
correspond to the ATC induction concen-
tration ranging from 10 ng/mL (yellow) to
0.1 ng/mL (black).

F = kBT
[
− log

(
1 + e−∆εAI/kBT

)−1
− log

R
NNS

+
∆εR
kBT

]
. [5]

We have recently interrogated how this formalism can be used
to map mutations within the repressor to biophysical param-
eters by examining the difference in free energy between a
mutant and reference (wild-type) strain, ∆F = Fmut − Fre f (15).
This approach revealed that different parametric changes yield
characteristic response functions to changing inducer concen-
trations. Rather than using wild-type and mutant variants of
the repressor, we can choose a reference condition and compare
how the free energy changes between different growth media.
Here, we choose the reference condition to be a sample grown
at 37◦ C with glucose as the available carbon source and a re-
pressor copy number R = 100 per cell. Under the hypothesis
that the only variable parameter in these growth conditions
is the repressor copy number R, the shift in free energy ∆F
becomes

∆F = FC − Fre f = − log
RC

Rre f
, [6]

where FC and RC correspond to the free energy and repressor
copy number of the different growth conditions. This con-
cise prediction serves as a quantitative measure of how robust
the energetic parameters ∆εR and ∆εAI are in units of kBT
[Fig. 4(B)]. In using free energy shifts as a diagnostic, one can
immediately determine the effect of the perturbation on the
parameter values by quantifying the disagreement between
the observed and predicted ∆F as the parameters and the free
energy are both in the same natural units.

We inferred the observed free energy for the fold-change
measurements shown in Fig. 4(A) [as described previously (15)
and in the SI Text] and compared it to the theoretical prediction
of Eq. 6, shown in Fig. 4(C). Again, we see the observed change

in free energy is in strong agreement with our theoretical pre-
dictions. This agreement indicates that the free energy shift
∆F can be used in multiple contexts to capture the energetic
consequences of physiological and evolutionary perturbations
between different states of the system. The insensitivity of
the biophysical parameters to these distinctly different phys-
iological states demonstrates that ∆εAI and ∆εR are material
properties of the repressor defined by the intricate hydrogen
bonding networks of its constituent amino acids rather than by
the chemical constituency of its surroundings. Tuning tempera-
ture, however, can change these material properties.

Fold-change dependence on temperature variation. Unlike
the identity of the carbon source, the temperature of the system
is explicitly stated in Eq. 2 and Eq. 3 where ∆εR and ∆εAI are
defined relative to the thermal energy of the system in which
they were determined. This scaling is mathematically quanti-
fied as kBT dividing the exponentiated terms in Eq. 2 and Eq. 3.
As all biophysical parameters were determined at a reference
temperature of 37◦ C, any change in the growth temperature
must be included as a correction factor. The simplest approach
is to rescale the energy by the relative change in temperature.
This is a simple multiplicative factor of φT = kBTre f /kBTexp
where Tre f is the reference temperature of 37◦ C and Texp is the
experimental temperature. This is an intuitive result since an in-
crease in temperature relative to the reference results in φT < 1,
weakening the binding. Similarly, decreasing the temperature
scales φT > 1, strengthening the binding relative to that of the
reference temperature.

Fig. 5 (A) shows the measured fold-change in gene expres-
sion (points) plotted against the theoretical prediction with this
correction factor (orange line). It is immediately evident that
a simple rescaling of the energetic parameters is not sufficient
for the 32◦ C condition and slightly underestimates the fold-
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Fig. 4. Fold-change in gene expression and free energy shifts in different growth media. (A) Measurements of the fold-change in gene expression plotted against the
measured repressor copy number. Black line is the prediction and the width corresponds to the uncertainty in the DNA binding energy as reported in Ref. (10). Points and
errors are the mean and standard error of five to eight replicates for each ATC induction condition. (B) An example of how fold-change is mapped onto changes in the free
energy. Top panel shows the fold-change in gene expression at specific repressor copy numbers (points). Arbitrarily choosing 100 repressors per cell as the reference state
(white point), any measurement with larger or smaller fold-change has a negative shift or positive shift in the free energy, shown as red and green panels respectively. If R is the
only changing variable, the free energy shift should be a linear function of R (bottom panel). (C) The inferred free energy shift from the fold-change measurements in A. Black
line is the prediction. Points correspond to the mean and standard error of the repressor copy number measurements over five to eight biological replicates. Vertical error bars
correspond to the 95% credible region of the inferred free energy.

change in the 42◦ C condition. To identify the source of this
disagreement, we can again examine the free energy shift ∆F.
As both ∆εAI and ∆εR are scaled to the thermal energy, ∆F
defined as FT − Fre f can be directly calculated as

∆F = kBTexp

− log
1 + e

− ∆εAI
kB Tre f

1 + e−
φT ∆εAI
kB Texp

− log
RT

Rre f

 + ∆εR (1− φT) .

[7]
This prediction along with the empirically determined ∆F

is shown in Fig. 5(B). Again, we see that this simple correction
factor significantly undershoots or overshoots the observed
∆F for 32◦ C and 42◦ C, respectively, indicating that there are
temperature dependent effects that are not accounted for in the
simplest null model of temperature dependence.

The model described by Eqs. 2 and 3 subsumes the myr-
iad rich dynamical processes underlying protein binding and
conformational changes into two effective energies, ∆εR and
∆εAI . By no means is this done to undercut the importance of
these details in transcriptional regulation. Rather, it reduces the
degrees of freedom in this objectively complex system to the
set of the details critical to particular conditions in which we
want to draw predictions. All prior dissections of this thermo-
dynamic model have been performed at a single temperature,
abrogating the need to consider temperature dependent effects.
As we now vary temperature, we must consider details that are
swept into the effective energies.

The model presented here only considers entropy by enu-
merating the multiplicity of states in which the repressor can

bind to the DNA nonspecifically, resulting in terms of the form
R

NNS
. However, there are many other temperature-dependent

entropic contributions to the effective energies such as the frac-
tion of repressors bound to DNA versus in solution (32, 33),
the vibrational entropy of the repressor (34), or conformational
entropy of the genome (35, 36). We can consider the effective en-
ergies ∆εR and ∆εAI as having generic temperature dependent-
entropic components ∆SR and ∆SAI ,

∆εR = ∆HR − T∆SR , [8]

and
∆εAI = ∆HAI − T∆SAI , [9]

where ∆HR and ∆HAI is the enthalpic contribution to the en-
ergies ∆εR and ∆εAI , respectively. Given the fold-change mea-
surements at 32◦ C and 42◦ C, we estimated the entropic pa-
rameters ∆SR and ∆SAI under the constraints that at 37◦ C,
∆εR = −13.9 kBT and ∆εAI = 4.5 kBT (see the SI text for more
discussion on this parameter estimation). The grey shaded lines
in Fig. 5 show the result of this fit where the width represents
the 95% credible region of the prediction given the estimated
values of ∆SR and ∆SAI . Including this phenomenological treat-
ment of the entropy improves the prediction of the fold-change
in gene expression [Fig. 5 (A)] as well as shift in free energy [Fig.
5 (B)]. This phenomenological description suggests that even
small shifts in temperature can drastically alter the expression
of a genetic circuit simply by tuning hidden entropic effects
rather than scaling the difference in affinity between specific
and nonspecific binding.
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(A)

(B) Fig. 5. Temperature effects on the fold-change in gene
expression and free energy. (A) The fold-change in gene
expression for growth in glucose supplemented medium at
32◦ C (left) and 42◦ C (right). Points and errors correspond
to the mean and standard error of five biological replicates.
Predictions of the fold-change are shown without correcting for
temperature (purple), with multiplicative scaling (orange), and
with an entropic penalty (grey). The width of the prediction of
the entropic penalty is the 95% credible region. (B) Predicted
and observed shifts in free energy for growth glucose medium
at 32◦ C (left) and 42◦ C (right). Points correspond to the
median of the inferred shift in free energy. Vertical error bars
indicate the bounds of the 95% credible region. Horizontal
position and error corresponds to the mean and standard error
for the repressor count over five biological replicates.

DISCUSSION

The past century of work in bacterial physiology has revealed a
rich molecular complexity that drives cellular growth rate (20).
A key finding of this body of work is that the composition of
the proteome is highly dependent on the specific growth condi-
tion, with entire classes of genes being up- or down-regulated
to ensure that enough resources are allocated towards main-
taining a pool of active ribosomes (2, 4). These studies have
led to a coarse-grained view of global gene expression where
physiological perturbations substantially change the molecular
composition of the cell, obfuscating the utility of using ther-
modynamic models of individual regulatory elements across
physiological states. In this work, we rigorously examine how
robust the values of the various biophysical parameters are to
changes in cellular physiology.

We first examined how nutrient fluctuations dictate the out-
put of this architecture. We took three carbon sources with
distinct metabolic pathways and varying quality and measured
the level of gene expression, hypothesizing that the values of
the biophysical parameters to be independent of the growth
medium. We found that even when the growth rate is varied
across a wide range (220 minute doubling time in acetate to 60
minute doubling time in glucose supported medium), there is
no significant change to the fold-change in gene expression or
in the expression of the transcription factor itself, within the
resolution of our experiments. Given numerous quantitative
studies of the proteomic composition reveal a dependence on
protein content with growth rate (4–6), we find this robustness
to be striking.

Schmidt et al. 2016 (5) found that the native expression of
LacI has a weak positive correlation with the growth rate. The
native LacI promoter region is solely regulated by activation
via the cAMP Receptor Protein (CRP), a broadly acting dual
regulator in E. coli (7). This is in contrast to the LacI expression

system used in the present work where the promoter is nega-
tively regulated by the TetR repressor, itself expressed from a
low-copy number plasmid. Furthermore, the expression of LacI
in this work is tuned by the addition of the allosteric effector
of TetR, ATC, adding yet another layer of allosteric regulation
on LacI expression. The significant difference in the regulatory
mechanisms between the native and synthetic circuit used in
this work makes the two findings difficult to directly compare.
Regardless, our finding that the fold-change in gene expres-
sion is unaltered from one carbon source to another illustrates
that the values of the biophysical parameters ∆εR and ∆εAI re-
main unperturbed, permitting quantitative prediction of gene
expression across numerous physiological states.

However, in varying the temperature, we find that the pre-
dictive utility of the biophysical parameters values determined
at 37◦ C is diminished, indicating that there are hidden ef-
fects not explicitly accounted for in our thermodynamic model.
The measurements of the fold-change in gene expression are
under- or over-estimated when the temperature is increased
or decreased, respectively, when one simply rescales the en-
ergetic terms by the relative change in temperature. There
are many features of transcriptional regulation that are not ex-
plicitly considered in our coarse-graining of the architecture
into a two-state model. Recently, it has been suggested that
the phenomenon of allostery writ large should be framed in
the language of an ensemble of states rather than a simple
active/inactive distinction (37). While our recent work illus-
trates that a two-state rendering of an allosteric repressor is
highly predictive in a variety of situations (13, 15), we must
now consider details which are dependent on the temperature
of the system. In Fig. 5, we demonstrate that incorporating
a temperature-dependent entropic cost to the energetic terms
significantly improves the description of the experimental data.
This is not to say, however, that this is now an open-and-closed
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Fig. 6. A singular theoretical description for the molecular biophysics of physi-
ological and evolutionary adaptation in the simple repression regulatory archi-
tecture. Measurements of the fold-change in gene expression varying the sequence
of the operator site [orange pentagons, Ref. (10)], concentration of extracellular
inducer [green squares, Ref. (13)], amino-acid sequence of the repressor [blue points,
Ref. (15)], and the various growth conditions queried in this work can be collapsed as
a function of the effective free energy. Error bars correspond to the standard error of
5 to 10 biological replicates.

case for what precisely defines this entropic cost. Rather, we
conclude that the phenomenology of the temperature depen-
dence can be better described by the inclusion of a correction
factor that is linearly dependent on the system temperature.
Biology is replete with phenomena which can introduce such
an effect, including changes to the material properties of the
repressor and DNA (34, 36), excluded volume effects (35), and
solubilities (32, 33, 38). Understanding the mechanistic under-
pinnings of temperature dependence in elasticity theory was
borne out of similar phenomenological characterization (39)
and required a significant dialogue between theory and experi-
ment (40). Further work is now needed to develop a theory of
temperature effects in the regulation of gene expression.

The effective free energy F, as defined in Eq. 5, is a state
variable of the simple repression regulatory architecture. This
is illustrated in Fig. 6 where fold-change measurements from a
wide array of conditions (and measurement techniques) can be
collapsed onto the same theoretical description. Evolutionary
perturbations (such as mutations in the operator or repressor
sequence), physiological changes (such as modulations of the
growth rate), or changes in the level of activity of the repressor
(due to changes in inducer concentration) do not change the
fundamental physics of the system and can all be described by
changes in the free energy relative to one another. While such
a statement is not "surprising", we can now say it with quanti-
tative confidence and use this principle to probe the degree to
which physiological perturbations influence the biophysical pa-
rameters writ large. With such a framework in hand, we are in
the auspicious position to take a predictive approach towards
understanding how this regulatory architecture evolves in ex-
perimental settings, shedding light on the interplay between

biophysical parameters, organismal fitness, and the fundamen-
tal forces of evolution.

Materials and Methods

Bacterial Strains and Growth Media. Three genotypes were primarily
used in this work, all in the genetic background of Escherichia coli
MG1655-K12 and all derived from those used in Ref. (12). The three
genotypes are as follows. For each experiment, an autofluorescence
control was used which contained no fluorescent reporters [except
for a CFP volume marker used for segmentation in Ref. (12)] which
had the lacI and lacZYA genes deleted from the chromosome. The
constitutive expression strain (∆lacI; ∆lacZYA) included a YFP reporter
gene integrated into the galK locus of the chromosome along with
a kanamycin resistance cassette. The experimental strains in which
LacI expression was controlled contained a lacI-mCherry fluorescent
fusion integrated into the ybcN locus of the chromosome along with
a chloramphenicol resistance cassette. This cassette was later deleted
from the chromosome using FLP/FRT recombination (41, 42). The
strain was then transformed with plasmid [pZS3-pN25-tetR following
notation described in Ref. (43)] constitutively expressing the TetR
repressor along with a chloramphenicol resistance cassette. All bacterial
strains and plasmids used in this work are reported in the SI Text.

Bacterial Growth Curves. Bacterial growth curves were measured in
a multi-well plate reader (BioTek Cytation5) generously provided by
the David Van Valen lab at Caltech. Cells constitutively expressing
YFP were grown overnight to saturation in LB broth (BD Medical) at
37◦ C with aeration. Once saturated, cells were diluted 1000 fold into
50 mL of the desired growth medium and were allowed to grow at
the appropriate experimental temperature with aeration for several
hours until an OD600nm ≈ 0.3 was reached. Cells were then diluted 1:10
into the desired growth media at the desired temperature. After being
thoroughly mixed, 500 µL aliquots were transferred to a black-walled
96-well plate (Brooks Automation Incorporated, Cat No. MGB096-1-2-
LG-L), leaving two rows and two columns of wells on each side of the
plate filled with sterile growth medium to serve as blanks and buffer
against temperature variation. The plate was then transferred to the
pre-warmed plate reader. OD600nm measurements were made every
five minutes for 12 to 24 hours until cultures had saturated. In between
measurements, the plate incubated at the appropriate temperature
with a linear shaking mode. We found that double-orbital shaking
modes led to the formation of cell aggregates which gave inconsistent
measurements.

Estimation of Bacterial Growth Rate. Non-parametric estimation of
the maximum growth rate was performed using the FitDeriv Python
package as described in Ref. (44). Using this approach, the bacterial
growth curve is modeled as a Gaussian process in which the measured
growth at a given time point is modeled as a Gaussian distribution
whose mean is dependent on the mean of the neighboring time points.
This allows for smooth interpolation between adjacent measurements
and calculation of second derivatives without an underlying parametric
model. The reported growth rates are the maximum value inferred
from the exponential phase of the experimental growth curve.

Growth Conditions. Parent strains (autofluorescence control, ∆lacI con-
stitutive control, and the ATC-inducible LacI-mCherry strain) were
grown in LB Miller broth (B.D. Medical, Cat. No. 244620 ) at 37◦ C with
vigorous aeration until saturated. Cells were then diluted between 1000
and 5000 fold into 3 mL of M9 minimal medium (B.D. Medical, Cat.
No. 248510). The bacterial strain expressing the tetracycline-inducible
LacI-mCherry was diluted into six 3 mL cultures with differing con-
centrations of ATC (Chemodex, Cat. No. CDX-A0197-T78) ranging
from 0.1 to 10 ng / mL to induce expression of the transcription factor.
These concentrations were reached by dilution from 1 µg / mL stock
in 50% ethanol. All cultures were shielded from ambient light using
either aluminum foil or via an enclosure and were grown at the ap-
propriate experimental temperature with aeration until an OD600nm of
approximately 0.25− 0.35. Due to pipetting errors, cultures reached
OD600nm ≈ 0.3 at slightly different points in time. To ensure that strains
could be directly compared, all strains were back diluted by several fold
until equivalent. When all samples reached the appropriate OD600nm,
the cells were harvested for imaging.
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Imaging Sample Preparation. Prior to the preparation of cell cultures
for imaging, a 2% (w/v) agarose substrate (UltraPure, Thermo Sci-
entific) was prepared and allowed to reach room temperature. For
experiments conducted at 42◦C, 4% (w/v) agarose substrates were
prepared. Briefly, the agarose was mixed with the appropriate growth
medium in a 50 mL conical polystyrene tube and then microwaved
until molten. A 300 to 500 µL aliquot was then sandwiched between
two glass coverslips to ensure a flat imaging surface. Once solidified,
the agarose pads were cut into squares approximately 0.5 cm per side.

To determine the calibration factor between fluorescence and pro-
tein copy number, production the fluorophore in question must be
halted such that all differences in intensity between two daughter cells
result from binomial partitioning of the fluorophores and not from
continuing expression. This was achieved by removing the anhydrous
tetracycline inducer from the growth medium through several washing
steps as outlined in Ref. (12). Aliquots of 100 µL from each ATC-
induced culture were combined and pelleted at 13000×g for 2 minutes.
The supernatant (containing ATC) was aspirated and replaced with 1
mL of M9 growth medium without ATC. The pellet was resuspended
and pelleted at 13000×g. This wash step was repeated three times to
ensure residual ATC had been removed and LacI-mCherry production
was halted. After the final wash, the cell pellet was resuspended in 1
mL of M9 medium and diluted ten-fold. A 1 µL aliquot of the diluted
mixture was then spotted onto an agarose substrate containing the
appropriate carbon source.

The remaining bacterial cultures (autofluorescence control, constitu-
tive expression control, and the ATC-induced samples) were diluted
ten-fold into sterile M9 medium.This dilution was thoroughly mixed
and 1 µL aliquots were spotted onto agarose substrates lacking the
carbon source.

Once the spotted cells had dried onto the agarose substrates (about
5 to 10 minutes after deposition), the agarose pads were inverted and
pressed onto a glass bottom dish (Electron Microscopy Sciences, Cat.
No. 70674-52) and sealed with parafilm. Strips of double stick tape
were added to the edge of the dish to help immobilize the sample on
the microscope stage and minimize drift.

Microscopy. All imaging was performed on a Nikon Ti-Eclipse inverted
microscope outfitted with a SOLA LED fluorescence illumination sys-
tem. All images were acquired on a Andor Zyla 5.5 sCMOS camera
(Oxford Instruments Group). The microscope body and stage was en-
closed in a plexiglass incubation chamber (Haison, approximately 1◦ C
regulation control) connected to an external heater. Temperature of the
stage was measured via a thermometer which controlled heating of the
system.

All static images (i.e. images from which fold-change and repressor
counts were calculated) were measured in an identical manner. Ten to
fifteen fields of view containing on average 25 cells were imaged using
phase contrast and fluorescence excitation. Fluorescence exposures
were each 5 seconds while the phase contrast exposure time was be-
tween 75 ms and 150 ms. This procedure was repeated for each unique
strain and ATC induction concentration.

To compute the calibration factor for that day of imaging, time-
lapse images were taken of a separate agarose pad covered in cells
containing various levels of LacI-mCherry. Fifteen to twenty positions
were marked, choosing fields of view containing 20 to 50 cells. Cells
were allowed to grow for a period of 90 to 120 minutes (depending
on the medium-dependent growth rate) with phase contrast images
taken every 5 to 10 minutes. At the final time-point, both phase contrast
and fluorescence images were acquired using the same settings for the
snapshots. Once the experiment was completed, images were exported
to .tif format and transferred to cold storage and a computational
cluster for analysis.

Lineage Tracking. Cells were segmented and lineages reconstructed
using the deep-learning-based bacterial segmentation software Super-
Segger v1.1 (45, 46) operated through MATLAB (Mathworks, v2017b).
We found that the pre-trained network constants 100XEcM9 (packaged
with the SuperSegger software) worked well for all growth conditions
tested in this work. The generated files (clist.mat) associated with
each sample and position were parsed using bespoke Python scripts
to reconstruct lineages and apply appropriate filtering steps before
calculating the fluorescence calibration factor. We direct the reader to
the SI text for details of our data validation procedure to ensure proper
lineage tracking.

Calculation of the Calibration Factor. To estimate the calibration factor
α, we used a Bayesian definition of probability to define a posterior
distribution of α conditioned on intensity measurements of sibling
cells after division. We direct the reader to the SI text for a detailed
discussion of the inferential procedures and estimation of systematic
error. We give a brief description of the inference below.

We are interested in determining the fluorescence of a single LacI-
mCherry repressor dimer given a set of intensity measurements of
sibling cells, [I1 , I2]. The intensity of a given cell I is related to the
number of LacI-mCherry dimers it is expressing by a multiplicative
factor α which can be enumerated mathematically as

I = αN, [10]

where N is the total number of LacI-mCherry dimers. We can define
the posterior probability distribution of α conditioned on the intensity
measurements using Bayes’ theorem as

g(α | [I1, I2]) =
f ([I1 , I2] | α)g(α)

f ([I1 , I2])
. [11]

where we have used g and f as probability densities over parameters
and data, respectively. The denominator of this expression (the evi-
dence) is equivalent to the first term of the numerator (the likelihood)
marginalized over α. In this work, this term serves as normalization
factor and can be neglected.

Assuming that no more LacI-mCherry dimers are produced during
cell division, the number of repressors that each sibling cell receives af-
ter division of the parent cell is binomially distributed with a probability
p. We can make the approximation that partitioning of the repressors
is even such that p = 1/2. The validity of this approximation is dis-
cussed in detail in the SI text. Using Eq. 10 and the change-of-variables
formula, we can define the likelihood g([I1, I2] | α) as

g([I1 , I2] | α) =
1
αk

k

∏
i

Γ
(

I1 i+I2 i
α + 1

)
Γ
(

I1 i
α + 1

)
Γ
(

I2 i
α + 1

) 2−
I1 i+I2 i

α , [12]

where k is the total number of sibling pairs measured.
With a likelihood defined, we must now define a functional form for

g(α) which describes all prior information known about the calibration
factor knowing nothing about the actual measurements. Knowing that
we design the experiments such that only ≈ 2/3 of the dynamic range
of the camera is used and α cannot be less than or equal to zero, we can
define a half-normal distribution with a standard deviation of σ as

g(α) =

√
2

πσ2 exp
[
−α2

2σ2

]
; ∀α > 0. [13]

where the standard deviation is large, for example, σ = 500 a.u. /
fluorophore. We evaluated the posterior distribution using Markov
chain Monte Carlo (MCMC) as is implemented in the Stan probabilistic
programming language (47). The .stan file associated with this model
along with the Python code used to execute it can be accessed on the
paper website.

Counting Repressors. Given an estimation for α for each experiment,
we calculate the total number of repressors per cell from a

R =
ImCherry

α
. [14]

However, as discussed in detail in the SI text, a systematic error in
the repressor count is introduced due to division in the asynchronous
culture between the cessation of LacI-mCherry production and the
actual imaging. The entire sample preparation procedure is ≈ 30− 60
min, during which time some cells complete a cell division, thereby
diluting the total repressor count. To ensure that the measured number
of repressors corresponded to the measured YFP intensity, we restricted
our dataset for all experiments to cells that had a pole-to-pole length
` ≥ 3.5 µm, indicating that they had likely not undergone a division
during the sample preparation.

Code and Data Availability. All code used in this work is available on
the paper website and associated GitHub repository(DOI: 0.5281/zen-
odo.3560369). This work also used the open-source software tools
SuperSegger v.1.1(45, 46) for lineage tracking and FitDeriv v.1.03
(44) for the nonparametric estimation of growth rates. Raw image

9

https://rpgroup.caltech.edu/mwc_growth
https://github.com/rpgroup-pboc/mwc_growth
https://www.github.com/rpgroup-pboc/mwc_growth
http://mtshasta.phys.washington.edu/website/SuperSegger.php
http://swainlab.bio.ed.ac.uk/software/fitderiv/


files are large (≈ 1.8 Tb) and are therefore available upon request.
The clist.mat files used to calculate fold-change and to assign sibling
cells can be accessed via the associated GitHub repository via (DOI:
0.5281/zenodo.3560369) or through Caltech DATA under the DOI:
10.22002/D1.1315.
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