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A Model choices, simplifications and assumptions

This part of supporting information text offers a more detailed discussion of the
assumptions that were made in the model and explains the choices that were made.

Simplistic modeling of transcription. The precise mechanism at the promoter
level is not the key feature of this system, and we expect the same qualitative results
for slightly different transcription models. This work aims to gain an intuition from
the results, and the more unknown parameters there are, the harder this becomes.
Furthermore, the mechanistic details of transcription are not entirely known and would
make the model too complex: for example, transcription probably is not a Poisson
process, but comes in bursts. Additionally, very little is known about the function of
the xapAB promoter. For these reasons, we do not model every detail, but focus on the
most relevant features of the system, while still trying to be physically correct.

Firstly, the equilibrium assumption is not completely accurate, but has proven
successful in previous work. An example for this is the very detailed analysis of a
gene with one repressor in [1]. Secondly, different binding energies of XapR to its two

binding sites would change the equations as follows: the factor
(

1
KXapR

)2

would become

1
KXapR,1KXapR,2

and the factor 2
KXapR

would be replaced by
KXapR,1+KXapR,2

KXapR,1KXapR,2
. For most

choices of KXapR, this does not give the exact same results quantitatively, but we do
observe the same qualitative outcome (see also next paragraph). Thirdly, we consider
all but one state as inactive, which is not strictly correct. Still, as mentioned in the
main text, experiments suggest that this is reasonable. The fourth main simplification,
which is the independence of polymerase and XapR binding, will be discussed in a
separate subsection below.

In Fig 1, we have plotted phase portraits where some of the above assumptions have
not been made. For that, we have chosen some extreme values for the new parameters
to demonstrate that these simplifications do not have a significant influence. The
two additional transcription rates are large compared to experimental observations.
Moreover, the chosen values of [XapR]R,i correspond to a difference of two orders
of magnitude between KXapR,1 and KXapR,2. The difference between Oid and O3
in lac are two to three orders of magnitude [2]. The values were chosen such that
KXapR,1KXapR,2 = K2

XapR. Unsurprisingly, this is necessary to not observe large
deviations from the original equations. The results lead to the conclusion that, for the
purposes of this paper, the aforementioned simplifications are appropriate.

Activator and polymerase interaction. A mechanistically more precise model of
activation would include an interaction energy between polymerase and XapR. In that
case, pactive cannot be factored into separate terms for the polymerase and the XapR
binding probability. However, the precise activation mechanism is unknown.

Moreover, introducing an interaction energy between polymerase and XapR would
make the equations overly complex. This would not only make factorization impossible,
it would also be just as consequential to have different dissociation constants and
additional rates as in the previous paragraph. This leads to a huge number of terms
and parameters because of different interaction energies for every state, which can be
foreseen from the states and weights shown in the main text. The precise transcription
mechanism is not one of the central parts of the circuit we are investigating (see also
discussion in the previous paragraph). Thus, making it the by far most complex and
precise part of the equations would be unreasonable and hinder the understanding of
the more relevant components of the system.
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Fig 1. Results for different models of transcription. The parameters are the
same as the ones that were used for all other phase portraits in this report and that are
listed in a table in the main part. In (A), the phase portrait after addition of non-zero
transcription rates to all other polymerase-bound states is shown (third assumption
lifted). The new parameter values are rI = 10−2rp for the transcription rate when only
one XapR is bound and r0 = 10−3rp for the basal rate. In (B), the phase portrait after
introducing different XapR dissociation constants can be seen (second assumption
lifted). The new parameter values are [XapR]R,1 = 10 and [XapR]R,2 = 0.1.

Table 1. States and weights for a more precise model of transcription.

XapR Pol. Transcription Weight
none no 0 1
first no 0 wX1

second no 0 wX2

both no 0 wX1wX2e
∆εcoop

none yes r0 wp

first yes rX1 wpwX1e
∆εX1

second yes rX2 wpwX2e
∆εX2

both yes r2 wpwX1wX2e
∆εX1+∆εX2+∆εcoop

The first column shows which XapR sites are occupied in this state, the second one
whether polymerase is bound to the promoter, and the third the transcription rate. In
the weights, the notation is as follows: wX1 is the weight for XapR binding to the first
binding site on the promoter, wX2 is that to the second site, wp is the weight of
polymerase binding to the promoter, e∆εX1 is the interaction energy between one XapR
on the first binding site and the polymerase that is bound, e∆εX2 is the same for the
second binding site, and finally, e∆εcoop is the interaction energy of the two XapR at
both binding sites as in the main part.
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Furthermore, we do not expect our approximation to have a large influence: the
interaction energy will make the doubly bound state dominate, and the polymerase-
XapR interaction should be weak in the singly bound state, because very weak activation
is observed in the experiment when one of the XapR binding sites is removed (see
section E in this supporting information text). If e∆εX1 and e∆εX2 are small, we have
wpwX1e

∆εX1 ≈ wpwX2e
∆εX2 ≈ wpwX. If, in addition, the transcription rates for the

singly bound states are much smaller than those for the doubly bound state, we can
neglect the singly bound states in the nominator of pactive (which, as argued in the
previous paragraph “Simplistic modeling of transcription”, is a good assumption).
Thereby, we can obtain the same form of pactive that we are working with in the main
part by including the interaction between polymerase and XapR into εcoop.

Working with only one protein species. The proteins are transcribed together,
and thus, their rate of transcription and mRNA decay should be the same. The protein
decay is assumed to be dominated by cell division, making the decay rates roughly
equal as well. What could differ is the translation rate. Changes in this rate rescale the
protein synthesis rate by the same factor and thus, in steady-state, change the total
number of proteins. The only other place where the proteins appear in the ODE’s is
in their respective Michaelis-Menten term, and the latter is proportional to kcat[E]0.
Hence, different numbers of XapA and XapB can be accounted for by changing their
respective values of kcat.

Exponential protein decay. The protein decay should be dominated by dilution
through cell division, which is a discrete process. However, the cell grows before division,
resulting in a continuous dilution in concentration. Furthermore, replication leads to a
varying number of gene copies and thereby also a varying transcription rate. Trying to
capture all these mechanistic details would lead to an overcomplicated model. Treating
the protein decay as a Poisson process has produced correct results in past research,
which is why we expect this assumption to be reasonable.

Kinetics of XapB, NupC, and NupG. All statements in this paragraph are based
on data from [3]. Xanthosine entering the cell consists of two steps. In a first transport
step, xanthosine passes the outer membrane through porins like Tsx, OmpF and OmpC.
This does not seem to be a rate-limiting step. Then, XapB actively transports it across
the inner membrane, powered by the proton motive force. There are two other active
nucleoside transporters that seem to be transporting xanthosine with a very low affinity:
NupC and NupG. It was found that ΔnupC ΔnupG strains cannot grow on xanthosine.
Hence, these seem to be necessary to “start” the system by importing small amounts of
xanthosine that then activate xapB, and there appears to be no other significant way in
which xanthosine can enter the cell.

As mentioned in the main text, we assume the kinetic scheme of all three transporters
to be similar to that of lac permease (as it is described in [4]), which is discussed in
more detail in the next subsection. One transporter of this type can do two things
to change the intracellular xanthosine concentration [x]: it can actively transport one
xanthosine into the cell, powered by the proton gradient, or it can transport one out
of the cell, against the proton gradient. For net transport, a proton and a substrate
need to bind on one side of the membrane and detach from the transporter on the
other side of the membrane before the transporter goes back to the first side again (see
next subsection). Because of the proton gradient, influx is overall thermodynamically
more likely than export at low intracellular xanthosine concentrations, which leads to a
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net influx. For much higher intra- than extracellular xanthosine concentrations, the
difference in the chemical potential of xanthosine across the membrane can dominate
that of the protons and there is net efflux.

We model influx and efflux separately and use Michaelis-Menten kinetics for XapB
(this is discussed in more detail in the next subsection). For the turnover rate and
Michaelis constant for influx we write kb,i and Kb,i, respectively, and kb,e,Kb,e for
efflux. These parameters implicitly include the proton gradient.

For NupC and NupG, we approximate the transport reactions as linearly dependent
on the substrate. This should be appropriate, since their affinity for xanthosine is so
low that it cannot even be measured properly [3], which makes KM much larger than c

or [x] will ever be. Thus, the general kcat[E]0
[S]

KM+[S] can be approximated as kcat
KM

[E]0[S].

In our equations, kcat
KM

[E]0 is denoted by knup for influx, and the efflux rate is written
as ξknup. For the XapB kinetics, no such approximation can be made, because the
xanthosine concentration in the dynamic system can range from far below the respective
KM value to far above.

The kinetics of lac permease. All transporters in our system are driven by the
proton gradient [3], and we assume their kinetic scheme to be like that of lac permease.
This scheme is shown schematically in Fig 2. Even though it includes several steps,
the essential part is substrate binding, conformational change of the transporter, and
substrate release on the other side of the membrane. We assume the proton gradient
across the membrane to be constant and proton binding and unbinding to the transporter
to be fast. Hence, the latter does not need to be included explicitly in the kinetic model
(it is implicitly part of the turnover rate).

Substrate release should be much faster than conformational change, which is
analogous to ignoring the “EP” state in Michaelis-Menten (enzyme with product bound,
here the conformationally changed transporter with substrate still bound). Also, it
should be reasonable to neglect the immediate backwards reaction (before proton
release), and thus, Michaelis-Menten kinetics is obtained. Data from [5] and [6] actually
show that, at a physiologically reasonable proton gradient, both, influx and efflux, can
be described by the Michaelis-Menten equation very well.

What is neglected in this modeling is the fact that the transporter needs to release
the proton and undergo a conformational change again before being able to conduct
the same reaction again. However, by using experimentally determined apparent values
to estimate the kinetic constants, this is already included in these parameter values.
Another simplification we make is to treat influx and efflux as two independent reactions
instead of thinking of it as one reversible kinetic process. This seems reasonable, though,
because the transporter needs to lose its proton between reactions in order to obtain a
net transport. If the transporter has for example done steps 1-6 in Fig 2, it can from
there on really enter two entirely different reactions: it can do its conformational change
in its empty state (steps 7 and 8) to then transport a substrate again (steps 1-6) or it
can bind a new proton and a new substrate directly and transport them back (steps
6-1). The former would give influx and the latter efflux, so the two of them can be
modeled as separate reactions.

Passive transport across the membrane. Most small molecules diffuse passively
through the membrane, but at physiological pH, xanthosine is mostly negatively charged
and charged substances do not significantly diffuse across the membrane on their own.
Nevertheless, from the pKa of xanthosine we find that at physiological pH, about 1.5%
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Fig 2. Kinetic scheme for transport by proton-driven pumps. The
mechanism of lac permease as for example described in [4] is used as a model for
xanthosine transport. The enzyme binds a proton and a substrate (steps 1 and 2),
undergoes conformational change (steps 3 and 4), and then releases substrate and
proton on the other side of the membrane (steps 5 and 6). When the enzyme is empty,
it can change its conformation again to repeat the transport (steps 7 and 8). Instead, it
could also bind a new proton and substrate and transport them in the opposite
direction (steps 6, 5, 4, 3, 2, 1). Alternatively, it could also keep the proton and just
cycle back and forth, exchanging substrates from outside and inside the cell (steps 5, 4,
3, 2).
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of it is uncharged and could pass the membrane. This could be modeled as follows:(
d[x]

dt

)
diff

= JA = p(c− [x])A = pA︸︷︷︸
rate

(c− [x]) (1)

Here, J is the flux through the membrane, which follows directly from Fick’s first law
(if steady-state diffusion is assumed). The other new parameters are the membrane
area A and the membrane permeability coefficient p of the diffusing substrate.

The diffusion rate kd = pA can be estimated with the help of Overton’s rule. In
our model, we find that this passive diffusion alone (i.e. without NupC and NupG) is
enough to obtain bistability in the deterministic analysis as well as bimodality in the
stochastic simulations. However, experiments show that ΔnupC ΔnupG strains cannot
grow on xanthosine [3]. This suggests that passive diffusion alone is not enough to make
the cells switch. Experiments with cells in minimal media containing some glucose
and a xanthosine concentration in the bimodal regime show that the switching time
can be several generations. The same is observed in our simulations. The xanthosine
concentration that was used for the double knockout experiments, where no glucose was
present, is just above the switching threshold, which is when switching is slow. For this
reason, we suspect that without NupC and NupG and with only xanthosine as an energy
resource, the cells starve before they have switched. This probably is the reason why
passive diffusion is, in reality, not enough to observe switching. NupC and NupG can
probably keep the cells going at very low intracellular xanthosine concentrations. Because
of the active transport, they can accumulate a higher intracellular than extracellular
concentration of xanthosine.

Since NupC and NupG transport seems to be much more significant than diffusion,
we do not include the latter explicitly in our model. However, because it takes the form
given in Eq 1, it can easily be accounted for implicitly by slightly changing the values
of knup and ξ.

Other mechanisms for xanthosine degradation. There probably are some ways
in which xanthosine is degraded, other than by XapA. Otherwise, initially uninduced
cells that are transferred to only xanthosine as an energy source might not survive until
they have switched. As mentioned previously, it was found that they do [3], so they need
to be able to metabolize xanthosine somehow. Nevertheless, these degradation pathways
cannot have a big effect: as argued later on when estimating the Nup parameters, the
intracellular xanthosine concentration in the uninduced state must be a bit larger, but
not too much larger, than the extracellular one. Thus, degradation of xanthosine has to
be small because import through Nup is weak. Due to this, it should be appropriate to
linearize the equations describing these effects. Then, they can simply be accounted
for in the term for Nup transport by making slight changes in the values of ξ and knup.
It could, however, also be that the basal level of XapA is enough to obtain the small
degradation effect without any other pathways.
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B Parameter estimation

In this section we present a detailed estimation of the values of all nondimensional
parameters. Two dimensionful parameters appear in most nondimensional ones, namely
γp and Ka. For this reason, we start by estimating these.

The protein decay rate γp: Protein decay is generally dominated by dilution
through cell growth and division. The average doubling time of E. coli is 20-30 minutes.
We take this as an estimate for the protein half life, which leads us to a decay rate of
γp = ln 2

t1/2
≈ 5+2

−3 · 10−4 s−1. Note that these upper and lower bounds correspond to

half-lifes between 15 and 60 minutes, which should be reasonable. For the following
nondimensionalization, we work with a fixed value of γp = 5 · 10−4 s−1.

The Michaelis-Menten parameters for XapA (Ka, kα): The Michaelis-Menten
parameters of XapA kinetics have been measured in two independent publications [7,8].
Both have found similar values and we conclude Ka ≈ 6 ± 3 · 10−5 M and ka ≈
10−1±0.8 s−1. This gives kα ≈ 102±0.8. We choose to work with Ka = 5 · 10−5 M in the
following.

The extracellular xanthosine concentration [c]a: In the experiment, switching
occurred if cells were grown in a solution with a concentration of xanthosine of roughly
a few mM [3]. According to these experimental observations, the interesting range
of xanthosine should be [c]a ∈ [0, 103] (nondimensionalized), which corresponds to
c ∈ [0, 5 · 10−2] M. However, we are careful because there are issues with the solubility
of xanthosine.

The MWC parameters KχA, KIA, and ∆εx: The three MWC parameters are
the energy barrier between the active and inactive state of XapR and the equilibrium
constants of xanthosine binding to XapR in the two states. In Fig 3, the induction curve
as a function of the nondimensional parameters is shown. We assume that evolution has
tuned the induction curve such that less than 10% of XapR is active in the absence of
xanthosine, and more than 90% is active for [x] approaching infinity. This is a relatively
weak assumption, otherwise XapR would not really be fulfilling its job. It helps us by
putting a constraint on KIA and ∆εx:

pactive([x]a = 0) =
1

1 + e∆εx
< 0.1

1− pactive([x]a →∞) =
e∆εx

K2
IA + e∆εx

< 0.1

Thus,

∆εx > 2.2 and KIA > 3e∆εx/2.

A further constraint is found from KIA = KxI

KxA
= eβ∆E , where ∆E is the energy

difference between xanthosine binding to the two states. It is unlikely that this energy
difference is more than 7 kBT , which corresponds to roughly three strong hydrogen
bonds. This gives us an upper bound KIA < 103 and thereby ∆εx < 101. For KIA = 102,
the upper bound is ∆εx < 7. This gives us a range of KIA ≈ 101−103 and ∆εx ≈ 2−10

or, more precisely, ∆εx ≈ 2 to ln
(

1
9 (KIA)

2
)
≈ 2 (ln (KIA)− 1) < 12. Compared with

other systems, these values do seem reasonable.
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Fig 3. Induction curves given by MWC model. The main plot shows the
probability of XapR being in the active state as a function of the logarithm of the
xanthosine concentration for ∆εx as shown, KχA = 102, and KIA = 102. The shaded
areas indicate where the curve lies for changes in KIA of one order of magnitude.
Changing KχA by one order of magnitude, on the other hand, shifts all the curves by
one order of magnitude in the corresponding direction to the left or right. The inset
shows how the allowed regimes of ∆εx and KIA depend on each other. This explains
why for ∆εx = 7 and KIA = 10 (lower green line in the main plot), pactive at infinite
xanthosine concentrations becomes far too low.
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To find KχA we furthermore assume that the steep part of the induction curve lies
in the biologically relevant xanthosine regime, which estimated experimentally, see the
paragraph about [c]a above. Again, this is a rather weak assumption. As can be seen
from Fig 3, this assumption sets the value range of KχA. The line for ∆εx = 5 in Fig 3 is
at the experimentally expected position in the xanthosine regime. It becomes clear from
the figure that the position of the steep range is strongly affected by ∆εx, and a change
of 1 in the latter leads to roughly a change of 101 in the former. Thus, we estimate
KχA ≈ 102±1 · 10∆εx−5 and thereby finish our estimation of the MWC parameters.

The XapR concentration [XapR]R: It is experimentally known that the XapR
copy number is very low, on the order of 10−8 M (101 molecules per cell) [9]. We
estimate the XapR – DNA dissociation constant from the values for lac that were found
in [2] and obtain 10−8±2 M, where we have added one additional order of magnitude as

insecurity to the upper and lower bound. This gives [XapR]R = [XapR]tot
KXapR

≈ 100±2.

The XapR cooperative energy ∆εcoop: Any cooperative energy should come
mainly from an interaction between the two XapR molecules. It would be surprising
if it was larger than 10 kBT , which corresponds to roughly 4 strong hydrogen bonds.
Hence, we estimate ∆εcoop ≈ 0− 10.

The transcription rate parameter ρm: The transcription rate rm
[P]

[P]+KP
in the

presence of two activator molecules should be on the order of 10−2±1 nM s−1, thus

ρm
..= rm

γpKa

[P]
KP+[P] ≈ 10−3±2. Note that the units are nM s−1 and not just s−1 because

the corresponding rate equation is of the form d[m]
dt = r · p where the probability p is

dimensionless and the left-hand side has dimensions of mRNA concentration per time.
This estimate comes from the assumption that this rate should be roughly 101− 102

times larger than a normal basal rate (of other genes), for which common values are
around 10−3±1 nM s−1 [10]. Because experiments show that compared to the activated
promoter, the basal transcription rate is almost zero for xapAB (probably due to the
weak polymerase binding site), this actually means a 102- to 103-fold increase in the
transcription rate due to activation by XapR.

Keep in mind that the rate includes not only the effect of XapR on the pure speed of
transcription, bt also any effect of XapR on the polymerase dissociation constant. Still,
we do not expect higher values such as 100 nM s−1 since this is roughly the rate for
transcription of rRNA and the latter should be significantly faster. To further validate
our estimate, we can compare it to measured values for lac, which should be roughly
the same because the gene function is similar. The transcription rate for lac in the
absence of any repression that was found in [11] corresponds well with our estimate.

The mRNA decay rate parameter γmp. The mRNA life time is usually on the
order of 1 to 8 minutes which gives a decay rate of γm ≈ 10−3 − 10−2 s−1. Thus, we
have γmp

..= γm
γp
≈ 101±0.5.

The translation rate parameter ρp. The translation rate should be on the order
of rp ≈ 10−2 − 10−1 s−1 [10]. This gives ρp

..=
rp
γp
≈ 102±0.5.

The Michaelis-Menten parameters for XapB (kβ,i, Kβ,i, kβ,e, Kβ,e): To esti-
mate the parameters for both influx and efflux, we need data from experiments where
these two processes have been measured independently. Lactose permease, which we
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expect to function in a similar way as XapB, is comparatively well studied such that
these rates have been measured in multiple ways and for different conditions. Some
data from several publications is collected in [6] and we will base our estimates on this
and the corresponding references.

Comparing the effective rates and Michaelis constants of lactose permease and
the nucleoside transporters NupC and NupG shows that their orders of magnitude
are similar: from [12, 13] we find kcat ≈ 101 s−1, KM ≈ 101 − 102 µM for LacY and
from [3, 14, 15] kcat ≈ 102 s−1, KM ≈ 100 − 101 µM for pyrimidines through NupC
and NupG. Note that especially for Nup, these are only rough measurements, and it is
known that NupC behaves different with purines (thus also with xanthosine). Given
these values, we expect lactose permease to be similar enough to nucleoside transporters
so that we can use it as a starting point for our estimation of the XapB kinetic values.

We use the measured influx values that are summarized in [6] for a membrane
potential of 100 mV and obtain kb,i ≈ 101±1 s−1 and Kb,i ≈ 10−4±2 M. Here, the
uncertainty is estimated from the distribution of values of many kinds of enzymes that
is presented in [10]. The bounds also reflect the difference between LacY and Nup
that was found above. For the dimensionless quantities, this gives kβ,i ≈ 104±1 and
Kβ,i ≈ 101±2.

For the efflux parameters, we proceed similarly and obtain kb,e ≈ 100±2 s−1 and
Kb,e ≈ 10−3±3 M, therefore kβ,e ≈ 103±2 and Kβ,e ≈ 102±3. Because of disagreement
in literature, difficulty in measuring these parameters, and a lack of knowledge about
what value range should be expected, we put larger error bounds than for the influx.

The non-specific transport parameters kη, ξ: Estimating the rates of the Nup
transporters for xanthosine is difficult since there are no experimental values that could
be used as a reference. Because the rate cannot even be measured [3], it must be
much lower than that of XapB. The kinetic parameters should, however, be such that
the steady-state intracellular xanthosine concentration is significantly larger than the
extracellular one. Otherwise, there would be no relevant difference to passive diffusion,
which was shown to be insufficient for switching [3]. This essentially means ξ < 1,
which on the other hand implies that the Nup rate is larger than or at least equal to
the diffusion rate: If Nup transport were slower than diffusion, the latter would rule
and ξ would be close to 1 (because this is the ξ value of diffusion).

In addition, we know from lac permease that influx is not much faster than efflux,
which implies that ξ also cannot be too much smaller than 1. We guess ξ ≈ 0.8± 0.1.
The number of Nup transporters per cell is roughly 102 − 103 [9]. We expect kcat

KM
to

be at least two or three orders of magnitude lower for Nup than for saturated XapB,
where we have kb

Kb
≈ 105±3 M−1 s−1. These arguments set an estimated upper bound

on the non-specific transport rate: knup = kcat
KM

[E]0 . 10−3±3 s−1.
To find a lower bound, we estimate the diffusion rate. As described in Eq 1 in

the previous section, the diffusion rate can be written as 10−2 · p · A, where p is the
permeability coefficient of the membrane for xanthosine, A is the total cell surface
area, and 10−2 is the fraction of uncharged xanthosine at physiological pH. From the
permeabilities of various substances that are collected in [10] and from the measured
permeability values for purine nucleosides in [16], we estimate a permeability coefficient
of p̃ = 10−8±3 m s−1. We write the tilde because this value is given in a convention where
p̃ ·A = dx

dt with x being the number of xanthosine molecules and not the concentration.
Since we work in concentrations, we divide by an estimated cell volume of 10−18 m3

and, with a cell surface area of 10−11 m2, find a diffusion rate of roughly 10−3±3 s−1.
This sets the lower bound of knup.
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Interestingly, the upper and lower bound turn out to be the same. Thus, we obtain
the range knup ≈ 10−3±3 s−1, meaning kη ≈ 10−1±3.
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C Additional plots and explanations of the results

The 2D set of equations. If the mRNA concentration is set to steady-state as
discussed in the main text, the dynamical system is reduced to the two equations shown
below:

d[p]a
dτ

= ρ
[XapR]R,A

2
e−∆εcoop

1 + 2[XapR]R,A + [XapR]R,A
2
e−∆εcoop

− [p]a (2)

d[x]a
dτ

=

(
kβ,i

[c]a
Kβ,i + [c]a

− kβ,e
[x]a

Kβ,e + [x]a
− kα

[x]a
1 + [x]a

)
[p]a (3)

+ kη ([c]a − ξ[x]a)

with [XapR]R,A = [XapR]R

(
1 + [x]a

KχA

)2

(
1 + [x]a

KχA

)2

+ e∆εx

(
1 + [x]a

KχA

1
KIA

)2 .

Here, several of the parameters from the 3D system could now be combined into one by
defining ρ ..=

ρmρp
γmp

.

Magnitude of flow in the phase portraits. The plots in the main part do not
show the magnitude of the vector fields. For additional information, we show a 2D
vector plot with the magnitudes in Fig 4.

Increasing [c]a. Fig 5 shows a family of nullclines for increasing extracellular xantho-
sine concentration. It shows the transition from monostability, to bistability, and back
to monostability again.

Including transcriptional bursting. To test the robustness of our results to larger
stochasticity (which is expected in the real biological system), we explored how the
addition of burstiness in transcription altered our stochastic simulations. We assumed
a geometric distribution for the burst size s, i.e. p(s|θ) = θ · (1 − θ)s−1 with mean
θ−1 = 4, which is comparable to or slightly larger than reported values [17]. We then
truncate this distribution at a burst size of 10, meaning we did not consider larger
bursts, leading to an actual mean of around 3.2. The transcription rate was rescaled
such that the mean number of mRNA’s produced remained the same.

We observe the same qualitative behavior but with stronger fluctuations around
the mean and larger variation in the time to reach the steady-state mean. As an
example, Fig 6A shows the time evolution of one run of the simulation with bursting
for the same conditions (i.e. parameters and starting values) as the time evolution that
was shown in the main text. In addition, the distribution of adaptation times can be
seen in Fig 6B. Fig 7 shows the distribution obtained for the same and an additional
condition (i.e. parameters and starting values) as for the distributions shown in the
main text. The variance in the timescales and distributions is larger than without
bursting. Furthermore, switching already happens for lower [c]a: in 7C, most cells are
in the high expression state, whereas in the corresponding distribution in the main text,
there were many uninduced cells, i.e. the first peak was higher. To obtain a bimodal
distribution like in the main text, [c]a now needs to be set to 17.5 instead of 18.5 as
shown in 7B. This was to be expected, since the larger fluctuations make it easier for
the system to jump across the middle fixed point.

Still, there are no big qualitative differences to the results without bursting. Thus,
the assumptions we made that lead to less stochasticity than in the real biological
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Fig 4. Vector plot of a standard case of bistability. The 2D phase portraits as
a vector plot for for the standard set of parameters that was used in the main text.
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Fig 5. A family of curves for increasing [c]a. The blue, dashed curve is the
protein nullcline, which does not change with [c]a. The other curves are the xanthosine
nullclines for different values of the extracellular xanthosine concentration.
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Fig 6. Time evolution and adaptation times from the stochastic simulation
when transcriptional bursting is included. (A) shows the time evolution from
one run of the simulation. The simulation was run once for 5 · 105 s and started at an
mRNA, protein and intracellular xanthosine count of 0. The parameters that were used
are the same as in the table in the main text, the only exception being the extracellular
xanthosine concentration, which was chosen to be [c]a = 25 (recall [c]a ..= c

Ka
,

Ka = 5 · 10−5 M). (B) Blue shows the time until 90% of the protein concentration at
the upper fixed point was reached in 1000 runs of the simulation (same conditions as
(A)). The distribution from the main text (without bursting) is shown in orange for
comparison. For both, the mean of the distribution is indicated by the line in the
corresponding color.

system are not expected to have a very significant influence on our results, and the
switch-like behavior seems to be stable to stochastic perturbations.

Hysteresis effects. In Fig 8, the results mentioned in the hysteresis part of the
main text are shown. As mentioned there, the simulation was started with initially
fully induced cells. At concentrations where no cells switched from the low to the
high expression state before, cells here do not switch back to low expression. The
extracellular xanthosine concentration (for the other parameters being as in the Table
in the main text) needed to be as low as [c]a = 10 to observe bimodality and [c]a = 9 to
have all cells in the low expression state (recall [c]a ..= c

Ka
, Ka = 5 · 10−5 M).
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Fig 7. Distributions from the stochastic simulation when transcriptional
bursting is included. Blue shows the distributions from the simulation with bursts,
orange shows those without bursts from the main text for comparison. The following
values of [c]a were used: (A) [c]a = 12, (B) [c]a = 17.5 (not shown in main text), (C)
[c]a = 18.5, and (D) [c]a = 25 (recall [c]a ..= c

Ka
, Ka = 5 · 10−5 M). All other

parameters are as in the table in the main text, and the simulation was run 1000 times
for 106 s each (simulated time) and started at a mRNA, protein and intracellular
xanthosine count of 0.
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Fig 8. Decreasing [c]a in the fully induced system. Apart from [c]a, the
parameters are the same as in the table in the main text. For the distributions, the
simulations were run 1000 times for 106 s each and started at the mRNA, protein and
intracellular xanthosine counts of the high fixed point in the corresponding phase
portraits. The values of [c]a are 12 in (A), 10 in (B), and 9 in (C). When comparing to
the distributions in the main text where the simulation had initial concentrations of 0,
a clear hysteresis effect can be observed.
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D Chemical master equation

Here we provide some further details on our stochastic simulations by writing the
chemical master equation for our model. The state of our system is described by the
number of mRNA m, protein p, and xanthosine molecules x, and we write P (m, p, x)
for the probability of that state. The chemical master equation for the system is:

dP (m, p, x)

dt
= − P (m, p, x)[rmpactive(x) + γmm+ rpm+ γpp

+ kb,i
c

Kb,i + c
p + kb,e

x

Kb,e + x
p+ ka

x

Ka + x
p

+ knupc+ knupξx]

+ P (m+ 1, p, x)γm(m+ 1)

+ P (m− 1, p, x)rmpactive(x)

+ P (m, p+ 1, x)γp(p+ 1)

+ P (m, p− 1, x)rpm

+ P (m, p, x+ 1)[kb,e
x+ 1

Kb,e + x+ 1
p

+ ka
x+ 1

Ka + x+ 1
p+ knupξ(x+ 1)]

+ P (m, p, x− 1)[kb,i
c

Kb,i + c
p+ knupc] (4)

Here, all the parameters of course have to be measured in counts, not in concentrations.
As can be seen from the equation, none of the propensities depends explicitly on time
and hence, we can use the hybrid algorithm between classical Gillespie and τ-leaping
that we relied on.

Note that in the case with bursts that is discussed above, the transcription term

rmpactive(x)P (m−1, p, x) is changed to rmpactive(x)
∑10
k=1 P (m−k, p, x) θ·(1−θ)

k−1

Z with

Z =
∑10
k=1 k · θ · (1− θ)k−1 and θ = 1/4 in our example.
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E Experimental materials and methods

Construction of ∆xapABR deletion strain. Cells containing plasmid pSIM6
were diluted 1:100 in 50 mL LB media and grown to an OD600 of ≈ 0.4 at 30◦C. The
culture was immediately placed in a water bath shaker at 43 ◦C for 15 minutes and
then cooled in an ice bath for 10 minutes. Cells were then spun down for 10 minutes
(4, 000 g, 4 ◦C) and resuspended on ice in 50 mL of chilled water. This was repeated
three times before resuspending in 200µL of chilled water to generate competent cells.
Homologous primer extension sequences were obtained from Baba et al. [18] and used to
generate linear DNA containing a kanamycin resistance gene insert by PCR (amplified
from plasmid pKD4), using primers that contained homology for the region on the
chromosome to be deleted [19]. Electroporation was performed using 1µL purified PCR
product (about 100 ng DNA), mixed with 50µL cells. Cells were resuspended in 750µL
SOC media and outgrowth was performed on a shaker at 30 ◦C for 90-120 minutes.
Cells were then selected on an LB-agar plate containing kanamycin (30µg/mL) and
grown overnight at 30 ◦C. The deletions were confirmed by both colony PCR and
sequencing. After confirmation, the deletion was transferred to a clean strain through
P1 transduction and selection on kanamycin. Removal of kanamycin resistance was
achieved by transforming cells with plasmid pCP20 (expressing FLP recombinase,
carbenicillin resistance, on a temperature-sensitive replicon), with cells grown at 30 ◦C.
Lastly, several colonies were then growth colony-purified once non-selectively at 43 ◦C
and then tested for loss of antibiotic resistance for both kanamycin and carbenicillin.

Construction of ∆xapAB strain. Further experiments are underway in which
precise control of the xapR copy number are needed and the preliminary data from
these experiments are shown in the right panel of Fig. 2A of the main text. This strain
was constructed by creating a XapR-mCherry fusion protein expressed from a tetR
regulated promoter. This fusion construct was integrated into the ycbN locus of the
∆xapABR strain making an effective ∆xapAB strain. A pZS3-PN25-TetR expression
plasmid was also inserted into this genetic background which permits titratable control
over the xapR-mCherry copy number. For the data presented in this work, expression
was maximized using 10 ng/mL of the TetR inducer anhydro-tetracycline. Further
information of a similar construct (LacI-mCherry) can be found in [20] and [21].

Primer Sequence Comments
xapABR <> P2 actatttccggcaattcctgtctcctcac

ctactgtgtcaatgcagccaaCATAT
GAATATCCTCCTTAG

Forward primer for pKD4
with homology to xapABR
locus

xapABR <> P1 agatacaacaggtatcgctaatatagagg
aaagtgtcagagttaaaagatgtttt
ttcatGTGTAGGCTGGAGCT-
GCTTC

Reverse primer for pKD4
with homology to xapABR
locus

xapABR-seq-fwd cgggtcgttagctcagttggta upstream of xapR, to check
xapABR deletion

xapABR-seq-rev ttcccagtcgaagaacccgtac downstream of xapA, to
check xapABR deletion

Table 2. Primers for deletion strains. Lower case sequences are homologous to a
chromosomal locus. Upper case indicates sequences used for PCR amplification.
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